Citation: |
[1] |
J. Aaronson, H. Nakada, O. Sarig and R. Solomyak, Invariant measures and asymptotics for some skew products, Isr. J. Math., 128 (2002), 93-134.doi: 10.1007/BF02785420. |
[2] |
J. P. Conze, Equirépartition et ergodicité de transformations cylindriques, in "Séminaire de Probabilité, I" (Univ. Rennes, Rennes, 1976),Exp. No. 2, Dépt. Math. Informat., Univ. Rennes, Rennes, (1976), 21 pp. |
[3] |
E. Gutkin, Billiards on almost integrable polyhedral surfaces, Erg. Th. Dyn. Sys., 4 (1984), 569-584.doi: 10.1017/S0143385700002650. |
[4] |
B. Hasselblatt and A. Katok, "Intoduction to the Modern Theory of Dynamical Systems," Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. |
[5] |
M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle des rotations, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5-233. |
[6] |
W. P. Hooper, Dynamics on an infinite surface with the lattice property, preprint, (2007), arXiv:0802.0189. |
[7] |
W. P. Hooper, The invariant measures of some infinite interval exchange maps, preprint, (2010), arXiv:1005.1902. |
[8] |
D. Maharam, Incompressible transformations, Fund. Math., 56 (1964), 35-50. |
[9] |
H. Nakada, Piecewise linear homeomorphisms of type III and the ergodicity of cylinder flows, Keio Math. Sem. Rep. No., 7 (1982), 29-40. |
[10] |
F. Valdez, Billiards in polygons and homogeneous foliations on $\mathbbC^2$, Ergod. Th. & Dynam. Sys., 29 (2009), 255-271.doi: 10.1017/S0143385708000151. |
[11] |
W. A. Veech, Boshernitzan's criterion for unique ergodicity of an interval exchange transformation, Ergod. Th. & Dynam. Sys., 7 (1987), 149-153.doi: 10.1017/S0143385700003862. |
[12] |
W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.doi: 10.1007/BF01388890. |