2013, 33(10): 4731-4742. doi: 10.3934/dcds.2013.33.4731

Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms

1. 

Katedra Geometrii, Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Łódź, Poland

Received  September 2010 Revised  March 2013 Published  April 2013

We estimate expansion growth types (in the sense of Egashira) of certain distal groups of homeomorphisms and manifold diffeomorphisms.The estimate implies zero entropy (in the sense of Ghys, Langevin and the author) and existence of invariant measures for such groups. We prove also existence of invariant measures for pseudogroups satisfying some conditions of distality type.
Citation: Paweł G. Walczak. Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4731-4742. doi: 10.3934/dcds.2013.33.4731
References:
[1]

J. Alvarez Lopez and A. Candel, Equicontinuous foliated spaces,, Math. Z., 263 (2009), 725. doi: 10.1007/s00209-008-0432-4.

[2]

M. Badura, Prescribing growth type of complete Riemannian manifolds of bounded geometry,, Ann. Polon. Math., 75 (2000), 167.

[3]

S. Banach, On Haar measure,, Uspekhi Mat. Nauk, 2 (1936), 161.

[4]

A. Biś and P. Walczak, Entropy of distal groups, pseudogroups and laminations,, Ann. Polon. Math., 100 (2011), 45. doi: 10.4064/ap100-1-5.

[5]

A. Candel and L. Conlon, "Foliations I,", Amer. Math. Soc., (2000).

[6]

S. Egashira, Expansion growth of foliations,, Ann. Fac. Sci. Toulouse, 2 (1993), 15. doi: 10.5802/afst.756.

[7]

R. Ellis, Distal transformation groups,, Pacific J. Math., 24 (1957), 401. doi: 10.2140/pjm.1958.8.401.

[8]

H. Furstenberg, The structure of distal flows,, Amer. J. Math., 85 (1963), 477. doi: 10.2307/2373137.

[9]

E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages,, Acta Math., 160 (1988), 105. doi: 10.1007/BF02392274.

[10]

A. Haefliger, Foliations and compactly generated pseudogroups,, in, (2000), 275. doi: 10.1142/9789812778246_0013.

[11]

S. Matsumoto, The unique ergodicity of equicontinuous laminations,, Hokkaido Math. J., 39 (2010), 389.

[12]

W. Parry, Zero entropy of distal and related transformations,, in, (1968), 383.

[13]

M. Rees, "On the Structure of Minimal Distal Transformation Groups with Topological Manifolds as Phase Spaces,", thesis, (1977).

[14]

W. Rudin, "Real and Complex Analysis,", McGraw-Hill, (1966).

[15]

S. Saks, "Monografie Matematyczne,", Theory of the Integral, 7 (1937).

[16]

P. Walczak, "Dynamics of Foliations, Groups and Pseudogroups,", Monografie Matematyczne, 64 (2004). doi: 10.1007/978-3-0348-7887-6.

[17]

A. Weil, "L'intégration dans les Groupes Topologiques et ses Applications,", (French) [This book has been republished by the author at Princeton, 869 (1941).

show all references

References:
[1]

J. Alvarez Lopez and A. Candel, Equicontinuous foliated spaces,, Math. Z., 263 (2009), 725. doi: 10.1007/s00209-008-0432-4.

[2]

M. Badura, Prescribing growth type of complete Riemannian manifolds of bounded geometry,, Ann. Polon. Math., 75 (2000), 167.

[3]

S. Banach, On Haar measure,, Uspekhi Mat. Nauk, 2 (1936), 161.

[4]

A. Biś and P. Walczak, Entropy of distal groups, pseudogroups and laminations,, Ann. Polon. Math., 100 (2011), 45. doi: 10.4064/ap100-1-5.

[5]

A. Candel and L. Conlon, "Foliations I,", Amer. Math. Soc., (2000).

[6]

S. Egashira, Expansion growth of foliations,, Ann. Fac. Sci. Toulouse, 2 (1993), 15. doi: 10.5802/afst.756.

[7]

R. Ellis, Distal transformation groups,, Pacific J. Math., 24 (1957), 401. doi: 10.2140/pjm.1958.8.401.

[8]

H. Furstenberg, The structure of distal flows,, Amer. J. Math., 85 (1963), 477. doi: 10.2307/2373137.

[9]

E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages,, Acta Math., 160 (1988), 105. doi: 10.1007/BF02392274.

[10]

A. Haefliger, Foliations and compactly generated pseudogroups,, in, (2000), 275. doi: 10.1142/9789812778246_0013.

[11]

S. Matsumoto, The unique ergodicity of equicontinuous laminations,, Hokkaido Math. J., 39 (2010), 389.

[12]

W. Parry, Zero entropy of distal and related transformations,, in, (1968), 383.

[13]

M. Rees, "On the Structure of Minimal Distal Transformation Groups with Topological Manifolds as Phase Spaces,", thesis, (1977).

[14]

W. Rudin, "Real and Complex Analysis,", McGraw-Hill, (1966).

[15]

S. Saks, "Monografie Matematyczne,", Theory of the Integral, 7 (1937).

[16]

P. Walczak, "Dynamics of Foliations, Groups and Pseudogroups,", Monografie Matematyczne, 64 (2004). doi: 10.1007/978-3-0348-7887-6.

[17]

A. Weil, "L'intégration dans les Groupes Topologiques et ses Applications,", (French) [This book has been republished by the author at Princeton, 869 (1941).

[1]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[2]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[3]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[4]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[5]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[6]

Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12.

[7]

Siniša Slijepčević. Stability of invariant measures. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[8]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[9]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[10]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[11]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[12]

Donald Ornstein, Benjamin Weiss. Entropy is the only finitely observable invariant. Journal of Modern Dynamics, 2007, 1 (1) : 93-105. doi: 10.3934/jmd.2007.1.93

[13]

Richard Miles, Michael Björklund. Entropy range problems and actions of locally normal groups. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 981-989. doi: 10.3934/dcds.2009.25.981

[14]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[15]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[16]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[17]

Amir Mohammadi. Measures invariant under horospherical subgroups in positive characteristic. Journal of Modern Dynamics, 2011, 5 (2) : 237-254. doi: 10.3934/jmd.2011.5.237

[18]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[19]

Gamaliel Blé. External arguments and invariant measures for the quadratic family. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 241-260. doi: 10.3934/dcds.2004.11.241

[20]

Huichi Huang. Fourier coefficients of $\times p$-invariant measures. Journal of Modern Dynamics, 2017, 11: 551-562. doi: 10.3934/jmd.2017021

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]