\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations

Abstract / Introduction Related Papers Cited by
  • In this work, a biharmonic equation with an impedance (non standard) boundary condition and more general equations are considered. The study is performed in the space $L^{p}(-1,0$ $;$ $X)$, $1 < p < \infty $, where $X$ is a UMD Banach space. The problem is obtained through a formal limiting process on a family of boundary and transmission problems $(P^{\delta})_{\delta > 0}$ set in a domain having a thin layer. The limiting problem models, for instance, the bending of a thin plate with a stiffness on a part of its boundary (see Favini et al. [13]).
        We build an explicit representation of the solution, then we study its regularity and give a meaning to the non standard boundary condition.
    Mathematics Subject Classification: 31A30, 35J40, 31A10, 35Q74, 34K30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.doi: 10.2140/pjm.1960.10.419.

    [2]

    O. Belhamiti, R. Labbas, K. Lemrabet and A. Medeghri, Transmission problems in a thin layer set in the framework of the Hölder spaces: resolution and impedance concept, J. Math. Anal. Appl., 358 (2009), 457-484.doi: 10.1016/j.jmaa.2009.05.010.

    [3]

    J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 163-168.doi: 10.1007/BF02384306.

    [4]

    M. Bourlard, A. Maghnouji, S. Nicaise and L. Paquet, Asymptotic expansion of the solution of a mixed Dirichlet-Ventcel problem with a small parameter, Asymptot. Anal., 28 (2001), 241-278.

    [5]

    D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab., 9 (1981), 997-1011.doi: 10.1214/aop/1176994270.

    [6]

    G. Caloz, M. Costabel, M. Dauge and G. Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer, Asymptot. Anal., 50 (2006), 121-173.

    [7]

    H. Cartan, "Théorie Elémentaire des Fonctions Analytiques d'une ou Plusieurs Variables Complexes," Hermann, Paris, 1961.

    [8]

    M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded $H^{\infty} $ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.doi: 10.1017/S1446788700037393.

    [9]

    G. Dore, A. Favini, R. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.doi: 10.1016/j.jfa.2011.05.021.

    [10]

    G. Dore and A. Venni, $H^{\infty} $ functional calculus for sectorial and bisectorial operators, Studia Math., 166 (2005), 221-241.doi: 10.4064/sm166-3-2.

    [11]

    G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.doi: 10.1007/BF01163654.

    [12]

    M. Haase, "The Functional Calculus for Sectorial Operators," Operator Theory: Advances and Applications, 169, Birkhäuser Verlag, Basel, 2006.doi: 10.1007/3-7643-7698-8.

    [13]

    A. Favini, R. Labbas, K. Lemrabet, S. Maingot and H. D. Sidibé, Transmission problem for an abstract fourth-order differential equation of elliptic type in UMD spaces, Adv. Differential Equations, 15 (2010), 43-72.

    [14]

    H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.doi: 10.2140/pjm.1966.19.285.

    [15]

    J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5-68.

    [16]

    H. D. Sidibé, "Étude d'un Problème aux Limites et de Transmission dans une Couche Mince pour une Équation Différentielle Abstraite Elliptique d'Ordre Quatre," Ph.D thesis, Université du Havre in France, 2009.

    [17]

    H. Triebel, "Interpolation Theory, Functions Spaces, Differential Operators," North-Holland Publishing Co., Amsterdam, New York, 1978.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return