Citation: |
[1] |
A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.doi: 10.2140/pjm.1960.10.419. |
[2] |
O. Belhamiti, R. Labbas, K. Lemrabet and A. Medeghri, Transmission problems in a thin layer set in the framework of the Hölder spaces: resolution and impedance concept, J. Math. Anal. Appl., 358 (2009), 457-484.doi: 10.1016/j.jmaa.2009.05.010. |
[3] |
J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 163-168.doi: 10.1007/BF02384306. |
[4] |
M. Bourlard, A. Maghnouji, S. Nicaise and L. Paquet, Asymptotic expansion of the solution of a mixed Dirichlet-Ventcel problem with a small parameter, Asymptot. Anal., 28 (2001), 241-278. |
[5] |
D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab., 9 (1981), 997-1011.doi: 10.1214/aop/1176994270. |
[6] |
G. Caloz, M. Costabel, M. Dauge and G. Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer, Asymptot. Anal., 50 (2006), 121-173. |
[7] |
H. Cartan, "Théorie Elémentaire des Fonctions Analytiques d'une ou Plusieurs Variables Complexes," Hermann, Paris, 1961. |
[8] |
M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded $H^{\infty} $ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.doi: 10.1017/S1446788700037393. |
[9] |
G. Dore, A. Favini, R. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.doi: 10.1016/j.jfa.2011.05.021. |
[10] |
G. Dore and A. Venni, $H^{\infty} $ functional calculus for sectorial and bisectorial operators, Studia Math., 166 (2005), 221-241.doi: 10.4064/sm166-3-2. |
[11] |
G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.doi: 10.1007/BF01163654. |
[12] |
M. Haase, "The Functional Calculus for Sectorial Operators," Operator Theory: Advances and Applications, 169, Birkhäuser Verlag, Basel, 2006.doi: 10.1007/3-7643-7698-8. |
[13] |
A. Favini, R. Labbas, K. Lemrabet, S. Maingot and H. D. Sidibé, Transmission problem for an abstract fourth-order differential equation of elliptic type in UMD spaces, Adv. Differential Equations, 15 (2010), 43-72. |
[14] |
H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.doi: 10.2140/pjm.1966.19.285. |
[15] |
J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5-68. |
[16] |
H. D. Sidibé, "Étude d'un Problème aux Limites et de Transmission dans une Couche Mince pour une Équation Différentielle Abstraite Elliptique d'Ordre Quatre," Ph.D thesis, Université du Havre in France, 2009. |
[17] |
H. Triebel, "Interpolation Theory, Functions Spaces, Differential Operators," North-Holland Publishing Co., Amsterdam, New York, 1978. |