November  2013, 33(11&12): 5327-5345. doi: 10.3934/dcds.2013.33.5327

An interface problem: The two-layer shallow water equations

1. 

Laboratoire de Mathématiques et applications, Univ. de Poitiers, Teleport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil Cedex, France

2. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Bloomington, Indiana 47405

Received  September 2011 Revised  April 2012 Published  May 2013

The aim of this article is to study a model of two superposed layers of fluid governed by the shallow water equations in space dimension one. Under some suitable hypotheses the governing equations are hyperbolic. We introduce suitable boundary conditions and establish a result of existence and uniqueness of smooth solutions for a limited time for this model.
Citation: Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327
References:
[1]

E. Audusse, A multilayer Saint-Venant system: Derivation and numerical validation,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 189. doi: 10.3934/dcdsb.2005.5.189. Google Scholar

[2]

A. Bousquet, M. Petcu, M.-C. Shiue, R. Temam and J. Tribbia, Boundary conditions for limited area models,, Commun. Comput. Phys., 14 (2013), 664. doi: 10.4208/cicp.070312.061112a. Google Scholar

[3]

S. Benzoni-Gavage and D. Serre, "Multidimensional Hyperbolic Partial Differential Equations. First-Order Systems and Applications,", Oxford Mathematical Monographs. The Clarendon Press, (2007). Google Scholar

[4]

F. Bouchut and V. Zeitlin, A robust well-balanced scheme for multi-layer shallow water equations,, Discrete Cont. Dyn. Syst. Ser. B, 13 (2010), 739. doi: 10.3934/dcdsb.2010.13.739. Google Scholar

[5]

G.-Q. Chen and P. LeFloch, Existence theory for the isentropic Euler equations,, Arch. Rational Mech. Anal., 166 (2003), 81. doi: 10.1007/s00205-002-0229-2. Google Scholar

[6]

Q. Chen, M.-C. Shiue and R. Temam, The barotropic mode for the primitive equations, Special issue in memory of David Gottlieb,, Journal of Scientific Computing, (2009). doi: 10.1007/s10915-009-9343-8. Google Scholar

[7]

Q. Chen, M.-C. Shiue, R. Temam and J. Tribbia, Numerical approximation of the inviscid 3D Primitive equations in a limited domain,, Math. Mod. and Num. Anal., 46 (2012), 619. doi: 10.1051/m2an/2011058. Google Scholar

[8]

M. J. P. Cullen, Analysis of the semi-geostrophic shallow water equations,, Phys. D, 237 (2008), 1461. doi: 10.1016/j.physd.2008.03.014. Google Scholar

[9]

R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics,, Comm. Math. Phys., 91 (1983), 1. doi: 10.1007/BF01206047. Google Scholar

[10]

R. J. DiPerna, Convergence of approximate solutions to conservation laws,, Arch. Rational Mech. Anal., 82 (1983), 27. doi: 10.1007/BF00251724. Google Scholar

[11]

B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves,, Proc. Nat. Acad. Sci. USA, 74 (1977), 1765. doi: 10.1073/pnas.74.5.1765. Google Scholar

[12]

B. Engquist and L. Halpern, Far field boundary conditions for computation over long time,, Appl. Numer. Math., 4 (1988), 21. doi: 10.1016/S0168-9274(88)80004-7. Google Scholar

[13]

D. Givoli and B. Neta, High-order nonre ecting boundary conditions for the dispersive shallow water equations,, J. Comput. Appl. Math., 158 (2003), 49. doi: 10.1016/S0377-0427(03)00462-X. Google Scholar

[14]

O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique. (French) [The characteristic quasilinear hyperbolic mixed problem],, Comm. Partial Differential Equations, 15 (1990), 595. doi: 10.1080/03605309908820701. Google Scholar

[15]

R. L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation,, Math. Comp., 47 (1986), 437. doi: 10.2307/2008166. Google Scholar

[16]

R. L. Higdon, Numerical absorbing boundary conditions for the wave equation,, Math. Comput., 49 (1987), 65. doi: 10.1090/S0025-5718-1987-0890254-1. Google Scholar

[17]

A. Huang, M. Petcu and R. Temam, The one-dimensional supercritical shallow-water equations with topography,, Annals of the University of Bucharest, (2011), 63. Google Scholar

[18]

R. G. Keys, Absorbing boundary conditions for acoustic media,, Geophysics, 50 (1985), 892. doi: 10.1190/1.1441969. Google Scholar

[19]

P.-L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$,, in, 350 (1996), 184. Google Scholar

[20]

P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,, Comm. Pure Appl. Math., 49 (1996), 599. doi: 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5. Google Scholar

[21]

P.-L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems,, Comm. Math. Phys., 163 (1994), 415. doi: 10.1007/BF02102014. Google Scholar

[22]

T. T. Li and W. C. Yu, "Boundary Value Problems for Quasilinear Hyperbolic Systems,", Duke University Mathematics Series, (1985). Google Scholar

[23]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002). Google Scholar

[24]

A. J. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary,, Comm. Pure Appl. Math., 28 (1975), 607. doi: 10.1002/cpa.3160280504. Google Scholar

[25]

A. McDonald, Transparent boundary conditions for the shallow water equa- tions: Testing in a nested environment,, Mon. Wea. Rev., 131 (2003), 698. Google Scholar

[26]

J. Nycander and K. Döös, Open boundary conditions for barotropic waves,, Journal of Geophysical Research, 108 (2003). Google Scholar

[27]

J. Nycander, A. McC. Hogg and L. M. Frankcombe, Open boundary conditions for nonlinear channel flow,, Ocean Modelling, 24 (2008), 108. Google Scholar

[28]

I. M. Navon, B. Neta and M. Y. Hussaini, A perfectly matched layer approach to the linearized shallow water equations models,, Monthly Weather Review, 132 (2004), 1369. doi: 10.1175/1520-0493(2004)132<1369:APMLAT>2.0.CO;2. Google Scholar

[29]

J. Oliger and A. Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics,, SIAM J. Applied Math., 35 (1978), 419. doi: 10.1137/0135035. Google Scholar

[30]

P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water,, Arch. Rational Mech. Anal., 130 (1995), 183. doi: 10.1007/BF00375155. Google Scholar

[31]

D. Pritchard and L. Dickinson, The near-shore behaviour of shallow-water waves with localized initial conditions,, J. Fluid Mech., 591 (2007), 413. doi: 10.1017/S002211200700835X. Google Scholar

[32]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions,, Mathematical Methods in the Applied Sciences, (2011). doi: 10.1002/mma.1482. Google Scholar

[33]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, Trans. Amer. Math. Soc., 291 (1985), 167. doi: 10.1090/S0002-9947-1985-0797053-4. Google Scholar

[34]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial boundary value problems,, Trans. Amer. Math. Soc., 189 (1974), 303. doi: 10.2307/1996861. Google Scholar

[35]

A. Rousseau, R. Temam and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary Conditions and well-posedness in the linearized case,, J. Math. Pures Appl., 89 (2008), 297. doi: 10.1016/j.matpur.2007.12.001. Google Scholar

[36]

A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in computational methods for the atmosphere and the oceans,, Special Volume of the Handbook of Numerical Analysis, XIV (2008). Google Scholar

[37]

R. Salmon, Numerical solution of the two-layer shallow water equation with bottom topography,, Journal of Marine Research, 60 (2002), 605. doi: 10.1357/002224002762324194. Google Scholar

[38]

M-C. Shiue, J. Laminie, R. Temam and J. Tribbia, Boundary value problems for the shallow water equations with topography,, Journal of Geophysical Research, 116 (2011). doi: 10.1029/2010JC006315. Google Scholar

[39]

R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations,, J. Atmospheric Sci. 60 (2003), 60 (2003), 2647. doi: 10.1175/1520-0469(2003)060<2647:OBCFTP>2.0.CO;2. Google Scholar

[40]

B. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics, (1999). doi: 10.1002/9781118032954. Google Scholar

[41]

T. Warner, R. Peterson and R. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction,, Bull. Amer. Meteor. Soc., 78 (1997), 2599. doi: 10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2. Google Scholar

[42]

T. Yanagisawa, The initial boundary value problem for equations of ideal magneto-hydrodynamics,, Hakkaido Math. Jour., 16 (1987), 295. Google Scholar

show all references

References:
[1]

E. Audusse, A multilayer Saint-Venant system: Derivation and numerical validation,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 189. doi: 10.3934/dcdsb.2005.5.189. Google Scholar

[2]

A. Bousquet, M. Petcu, M.-C. Shiue, R. Temam and J. Tribbia, Boundary conditions for limited area models,, Commun. Comput. Phys., 14 (2013), 664. doi: 10.4208/cicp.070312.061112a. Google Scholar

[3]

S. Benzoni-Gavage and D. Serre, "Multidimensional Hyperbolic Partial Differential Equations. First-Order Systems and Applications,", Oxford Mathematical Monographs. The Clarendon Press, (2007). Google Scholar

[4]

F. Bouchut and V. Zeitlin, A robust well-balanced scheme for multi-layer shallow water equations,, Discrete Cont. Dyn. Syst. Ser. B, 13 (2010), 739. doi: 10.3934/dcdsb.2010.13.739. Google Scholar

[5]

G.-Q. Chen and P. LeFloch, Existence theory for the isentropic Euler equations,, Arch. Rational Mech. Anal., 166 (2003), 81. doi: 10.1007/s00205-002-0229-2. Google Scholar

[6]

Q. Chen, M.-C. Shiue and R. Temam, The barotropic mode for the primitive equations, Special issue in memory of David Gottlieb,, Journal of Scientific Computing, (2009). doi: 10.1007/s10915-009-9343-8. Google Scholar

[7]

Q. Chen, M.-C. Shiue, R. Temam and J. Tribbia, Numerical approximation of the inviscid 3D Primitive equations in a limited domain,, Math. Mod. and Num. Anal., 46 (2012), 619. doi: 10.1051/m2an/2011058. Google Scholar

[8]

M. J. P. Cullen, Analysis of the semi-geostrophic shallow water equations,, Phys. D, 237 (2008), 1461. doi: 10.1016/j.physd.2008.03.014. Google Scholar

[9]

R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics,, Comm. Math. Phys., 91 (1983), 1. doi: 10.1007/BF01206047. Google Scholar

[10]

R. J. DiPerna, Convergence of approximate solutions to conservation laws,, Arch. Rational Mech. Anal., 82 (1983), 27. doi: 10.1007/BF00251724. Google Scholar

[11]

B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves,, Proc. Nat. Acad. Sci. USA, 74 (1977), 1765. doi: 10.1073/pnas.74.5.1765. Google Scholar

[12]

B. Engquist and L. Halpern, Far field boundary conditions for computation over long time,, Appl. Numer. Math., 4 (1988), 21. doi: 10.1016/S0168-9274(88)80004-7. Google Scholar

[13]

D. Givoli and B. Neta, High-order nonre ecting boundary conditions for the dispersive shallow water equations,, J. Comput. Appl. Math., 158 (2003), 49. doi: 10.1016/S0377-0427(03)00462-X. Google Scholar

[14]

O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique. (French) [The characteristic quasilinear hyperbolic mixed problem],, Comm. Partial Differential Equations, 15 (1990), 595. doi: 10.1080/03605309908820701. Google Scholar

[15]

R. L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation,, Math. Comp., 47 (1986), 437. doi: 10.2307/2008166. Google Scholar

[16]

R. L. Higdon, Numerical absorbing boundary conditions for the wave equation,, Math. Comput., 49 (1987), 65. doi: 10.1090/S0025-5718-1987-0890254-1. Google Scholar

[17]

A. Huang, M. Petcu and R. Temam, The one-dimensional supercritical shallow-water equations with topography,, Annals of the University of Bucharest, (2011), 63. Google Scholar

[18]

R. G. Keys, Absorbing boundary conditions for acoustic media,, Geophysics, 50 (1985), 892. doi: 10.1190/1.1441969. Google Scholar

[19]

P.-L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$,, in, 350 (1996), 184. Google Scholar

[20]

P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,, Comm. Pure Appl. Math., 49 (1996), 599. doi: 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5. Google Scholar

[21]

P.-L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems,, Comm. Math. Phys., 163 (1994), 415. doi: 10.1007/BF02102014. Google Scholar

[22]

T. T. Li and W. C. Yu, "Boundary Value Problems for Quasilinear Hyperbolic Systems,", Duke University Mathematics Series, (1985). Google Scholar

[23]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, (2002). Google Scholar

[24]

A. J. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary,, Comm. Pure Appl. Math., 28 (1975), 607. doi: 10.1002/cpa.3160280504. Google Scholar

[25]

A. McDonald, Transparent boundary conditions for the shallow water equa- tions: Testing in a nested environment,, Mon. Wea. Rev., 131 (2003), 698. Google Scholar

[26]

J. Nycander and K. Döös, Open boundary conditions for barotropic waves,, Journal of Geophysical Research, 108 (2003). Google Scholar

[27]

J. Nycander, A. McC. Hogg and L. M. Frankcombe, Open boundary conditions for nonlinear channel flow,, Ocean Modelling, 24 (2008), 108. Google Scholar

[28]

I. M. Navon, B. Neta and M. Y. Hussaini, A perfectly matched layer approach to the linearized shallow water equations models,, Monthly Weather Review, 132 (2004), 1369. doi: 10.1175/1520-0493(2004)132<1369:APMLAT>2.0.CO;2. Google Scholar

[29]

J. Oliger and A. Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics,, SIAM J. Applied Math., 35 (1978), 419. doi: 10.1137/0135035. Google Scholar

[30]

P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water,, Arch. Rational Mech. Anal., 130 (1995), 183. doi: 10.1007/BF00375155. Google Scholar

[31]

D. Pritchard and L. Dickinson, The near-shore behaviour of shallow-water waves with localized initial conditions,, J. Fluid Mech., 591 (2007), 413. doi: 10.1017/S002211200700835X. Google Scholar

[32]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions,, Mathematical Methods in the Applied Sciences, (2011). doi: 10.1002/mma.1482. Google Scholar

[33]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, Trans. Amer. Math. Soc., 291 (1985), 167. doi: 10.1090/S0002-9947-1985-0797053-4. Google Scholar

[34]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial boundary value problems,, Trans. Amer. Math. Soc., 189 (1974), 303. doi: 10.2307/1996861. Google Scholar

[35]

A. Rousseau, R. Temam and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary Conditions and well-posedness in the linearized case,, J. Math. Pures Appl., 89 (2008), 297. doi: 10.1016/j.matpur.2007.12.001. Google Scholar

[36]

A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in computational methods for the atmosphere and the oceans,, Special Volume of the Handbook of Numerical Analysis, XIV (2008). Google Scholar

[37]

R. Salmon, Numerical solution of the two-layer shallow water equation with bottom topography,, Journal of Marine Research, 60 (2002), 605. doi: 10.1357/002224002762324194. Google Scholar

[38]

M-C. Shiue, J. Laminie, R. Temam and J. Tribbia, Boundary value problems for the shallow water equations with topography,, Journal of Geophysical Research, 116 (2011). doi: 10.1029/2010JC006315. Google Scholar

[39]

R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations,, J. Atmospheric Sci. 60 (2003), 60 (2003), 2647. doi: 10.1175/1520-0469(2003)060<2647:OBCFTP>2.0.CO;2. Google Scholar

[40]

B. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics, (1999). doi: 10.1002/9781118032954. Google Scholar

[41]

T. Warner, R. Peterson and R. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction,, Bull. Amer. Meteor. Soc., 78 (1997), 2599. doi: 10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2. Google Scholar

[42]

T. Yanagisawa, The initial boundary value problem for equations of ideal magneto-hydrodynamics,, Hakkaido Math. Jour., 16 (1987), 295. Google Scholar

[1]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[2]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[3]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic & Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[4]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[5]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure & Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[6]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[7]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[8]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[9]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[10]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

[11]

Gabriella Di Blasio. Ultraparabolic equations with nonlocal delayed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4945-4965. doi: 10.3934/dcds.2013.33.4945

[12]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[13]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control & Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[14]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[15]

V. Casarino, K.-J. Engel, G. Nickel, S. Piazzera. Decoupling techniques for wave equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 761-772. doi: 10.3934/dcds.2005.12.761

[16]

Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593

[17]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[18]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[19]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[20]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]