November  2013, 33(11&12): 5379-5405. doi: 10.3934/dcds.2013.33.5379

Singular limits for the two-phase Stefan problem

1. 

Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Strasse 5, D-06120 Halle

2. 

Technische Universität Darmstadt, Center of Smart Interfaces, 64287 Darmstadt, Germany

3. 

Department of Mathematics, Vanderbilt University, Nashville, TN 37240

Received  February 2012 Published  May 2013

We prove strong convergence to singular limits for a linearized fully inhomogeneous Stefan problem subject to surface tension and kinetic undercooling effects. Different combinations of $\sigma \to \sigma_0$ and $\delta\to\delta_0$, where $\sigma,\sigma_0\ge 0$ and $\delta,\delta_0\ge 0$ denote surface tension and kinetic undercooling coefficients respectively, altogether lead to five different types of singular limits. Their strong convergence is based on uniform maximal regularity estimates.
Citation: Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379
References:
[1]

B. Bazaliy and S. P. Degtyarev, The classical Stefan problem as the limit case of the Stefan problem with a kinetic condition at the free boundary,, Free Boundary Problems in Continuum Mechanics (Novosibirsk, (1992), 83. Google Scholar

[2]

R. Denk, M. Hieber and J. Prüss, "$\mathcal R$-Boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type,", AMS Memoirs 788, 788 (2003). Google Scholar

[3]

R. Denk, J. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary conditions of relaxation type,, J. Funct. Anal., 255 (2008), 3149. doi: 10.1016/j.jfa.2008.07.012. Google Scholar

[4]

R. Denk, J. Saal and J. Seiler, Inhomogeneous symbols, the Newton polygon, and maximal $L^p$-regularity,, Russian J. Math. Phys. (2), 15 (2008), 171. doi: 10.1134/S1061920808020040. Google Scholar

[5]

J. Escher, J. Prüss and G. Simonett, Analytic solutions for a Stefan problem with Gibbs-Thomson correction,, J. Reine Angew. Math., 563 (2003), 1. doi: 10.1515/crll.2003.082. Google Scholar

[6]

M. Hieber and J. Prüss, Functional calculi for linear operators in vector-valued $L^p$-spaces via the transference principle,, Adv. Differential Equations, 3 (1998), 847. Google Scholar

[7]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319. doi: 10.1007/s002080100231. Google Scholar

[8]

P. C. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, Functional analytic methods for evolution equations, 1855 (2004), 65. doi: 10.1007/978-3-540-44653-8_2. Google Scholar

[9]

M. Meyries and R. Schnaubelt, Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights,, J. Funct. Anal., 262 (2012), 1200. doi: 10.1016/j.jfa.2011.11.001. Google Scholar

[10]

J. Prüss, J. Saal and G. Simonett, Existence of analytic solutions for the classical Stefan problem,, Math. Ann., 338 (2007), 703. doi: 10.1007/s00208-007-0094-2. Google Scholar

[11]

J. Prüss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675. doi: 10.1137/070700632. Google Scholar

[12]

J. Prüss, G. Simonett and M. Wilke, On thermodynamically consistent Stefan problems with variable surface energy,, submitted, (). Google Scholar

[13]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611. doi: 10.1007/s00205-012-0571-y. Google Scholar

[14]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978). Google Scholar

[15]

H. Triebel, "Theory of Function Spaces,", 78 of Monographs in Mathematics, 78 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[16]

T. Youshan, The limit of the Stefan problem with surface tension and kinetic undercooling on the free boundary,, J. Partial Differential Equations, 9 (1996), 153. Google Scholar

show all references

References:
[1]

B. Bazaliy and S. P. Degtyarev, The classical Stefan problem as the limit case of the Stefan problem with a kinetic condition at the free boundary,, Free Boundary Problems in Continuum Mechanics (Novosibirsk, (1992), 83. Google Scholar

[2]

R. Denk, M. Hieber and J. Prüss, "$\mathcal R$-Boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type,", AMS Memoirs 788, 788 (2003). Google Scholar

[3]

R. Denk, J. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary conditions of relaxation type,, J. Funct. Anal., 255 (2008), 3149. doi: 10.1016/j.jfa.2008.07.012. Google Scholar

[4]

R. Denk, J. Saal and J. Seiler, Inhomogeneous symbols, the Newton polygon, and maximal $L^p$-regularity,, Russian J. Math. Phys. (2), 15 (2008), 171. doi: 10.1134/S1061920808020040. Google Scholar

[5]

J. Escher, J. Prüss and G. Simonett, Analytic solutions for a Stefan problem with Gibbs-Thomson correction,, J. Reine Angew. Math., 563 (2003), 1. doi: 10.1515/crll.2003.082. Google Scholar

[6]

M. Hieber and J. Prüss, Functional calculi for linear operators in vector-valued $L^p$-spaces via the transference principle,, Adv. Differential Equations, 3 (1998), 847. Google Scholar

[7]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319. doi: 10.1007/s002080100231. Google Scholar

[8]

P. C. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, Functional analytic methods for evolution equations, 1855 (2004), 65. doi: 10.1007/978-3-540-44653-8_2. Google Scholar

[9]

M. Meyries and R. Schnaubelt, Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights,, J. Funct. Anal., 262 (2012), 1200. doi: 10.1016/j.jfa.2011.11.001. Google Scholar

[10]

J. Prüss, J. Saal and G. Simonett, Existence of analytic solutions for the classical Stefan problem,, Math. Ann., 338 (2007), 703. doi: 10.1007/s00208-007-0094-2. Google Scholar

[11]

J. Prüss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675. doi: 10.1137/070700632. Google Scholar

[12]

J. Prüss, G. Simonett and M. Wilke, On thermodynamically consistent Stefan problems with variable surface energy,, submitted, (). Google Scholar

[13]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611. doi: 10.1007/s00205-012-0571-y. Google Scholar

[14]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978). Google Scholar

[15]

H. Triebel, "Theory of Function Spaces,", 78 of Monographs in Mathematics, 78 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[16]

T. Youshan, The limit of the Stefan problem with surface tension and kinetic undercooling on the free boundary,, J. Partial Differential Equations, 9 (1996), 153. Google Scholar

[1]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[2]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[3]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[4]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[5]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[6]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[7]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[8]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[9]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[10]

Xavier Fernández-Real, Xavier Ros-Oton. On global solutions to semilinear elliptic equations related to the one-phase free boundary problem. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019238

[11]

Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365

[12]

Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063

[13]

Brahim Bougherara, Jacques Giacomoni, Jesus Hernández. Some regularity results for a singular elliptic problem. Conference Publications, 2015, 2015 (special) : 142-150. doi: 10.3934/proc.2015.0142

[14]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[15]

Lincoln Chayes, Inwon C. Kim. The supercooled Stefan problem in one dimension. Communications on Pure & Applied Analysis, 2012, 11 (2) : 845-859. doi: 10.3934/cpaa.2012.11.845

[16]

Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741

[17]

Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058

[18]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[19]

Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations & Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006

[20]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]