2013, 33(2): 837-859. doi: 10.3934/dcds.2013.33.837

Positive solutions for non local elliptic problems

1. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso

Received  June 2011 Revised  March 2012 Published  September 2012

We establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type for nonlinear problems involving the fractional power of the Dirichlet Laplacian.
Citation: Jinggang Tan. Positive solutions for non local elliptic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 837-859. doi: 10.3934/dcds.2013.33.837
References:
[1]

D. Applebaum, Lévy processes-from probability to finance and quantum groups,, Notices Amer. Math. Soc., 51 (2004), 1336.

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Math., 22 (1991), 1.

[3]

K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality,, , ().

[4]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional laplacian,, , ().

[5]

X. Cabre and E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian,, Disc. Cont. Dyna. Syst., 28 (2010), 1179. doi: 10.3934/dcds.2010.28.1179.

[6]

X. Cabre and J. Solà-Morales, Layer solutions in a halfspace for boundary reactions,, Comm. Pure Appl. Math., 58 (2005), 1678. doi: 10.1002/cpa.20093.

[7]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: regularity, maximum principles, and hamiltonian estimates,, preprint, ().

[8]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Advances in Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025.

[9]

L. Caffarelli, J. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111.

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Part. Diff. Equa., 32 (2007), 1245.

[11]

A. Capella, J. Davila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353.

[12]

A. Chang, M. Gonzalez, Fractional Laplacian in conformal geometry,, Advances in Mathematics, 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016.

[13]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 0.1002/cpa.20116.

[14]

M. Chipot, M. Chlebík, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbbR_{+}^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958.

[15]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics., ().

[16]

S. Filippas, L. Moschini and A. Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional laplacian,, preprint., ().

[17]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125.

[18]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. in Part. Diff. Equa., 6 (1981), 883.

[19]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. doi: 10.4171/JEMS/6.

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032.

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2006), 67. doi: 10.1002/cpa.20153.

[23]

M. Struwe, "Variational Methods,", Ergebnisse der Mathematik und ihrer Grenzgebiete 34, (1996).

[24]

S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations,, Osaka J. Math., 12 (1975), 45.

[25]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Vari. and Part. Diff. Equa., 42 (2011), 21.

[26]

J. Xiao, A sharp Sobolev trace inequality for the fractional-order derivatives,, Bull. Sci. Math., 130 (2006), 87. doi: 10.1016/j.bulsci.2005.07.002.

show all references

References:
[1]

D. Applebaum, Lévy processes-from probability to finance and quantum groups,, Notices Amer. Math. Soc., 51 (2004), 1336.

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Math., 22 (1991), 1.

[3]

K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality,, , ().

[4]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional laplacian,, , ().

[5]

X. Cabre and E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian,, Disc. Cont. Dyna. Syst., 28 (2010), 1179. doi: 10.3934/dcds.2010.28.1179.

[6]

X. Cabre and J. Solà-Morales, Layer solutions in a halfspace for boundary reactions,, Comm. Pure Appl. Math., 58 (2005), 1678. doi: 10.1002/cpa.20093.

[7]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: regularity, maximum principles, and hamiltonian estimates,, preprint, ().

[8]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Advances in Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025.

[9]

L. Caffarelli, J. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111.

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Part. Diff. Equa., 32 (2007), 1245.

[11]

A. Capella, J. Davila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353.

[12]

A. Chang, M. Gonzalez, Fractional Laplacian in conformal geometry,, Advances in Mathematics, 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016.

[13]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 0.1002/cpa.20116.

[14]

M. Chipot, M. Chlebík, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbbR_{+}^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958.

[15]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics., ().

[16]

S. Filippas, L. Moschini and A. Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional laplacian,, preprint., ().

[17]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125.

[18]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. in Part. Diff. Equa., 6 (1981), 883.

[19]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. doi: 10.4171/JEMS/6.

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032.

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2006), 67. doi: 10.1002/cpa.20153.

[23]

M. Struwe, "Variational Methods,", Ergebnisse der Mathematik und ihrer Grenzgebiete 34, (1996).

[24]

S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations,, Osaka J. Math., 12 (1975), 45.

[25]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Vari. and Part. Diff. Equa., 42 (2011), 21.

[26]

J. Xiao, A sharp Sobolev trace inequality for the fractional-order derivatives,, Bull. Sci. Math., 130 (2006), 87. doi: 10.1016/j.bulsci.2005.07.002.

[1]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[2]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[3]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[4]

Raúl Ferreira, Julio D. Rossi. Decay estimates for a nonlocal $p-$Laplacian evolution problem with mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1469-1478. doi: 10.3934/dcds.2015.35.1469

[5]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[6]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[7]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to Lagrange problem for a fractional nonlinear control system with Riemann-Liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[8]

M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004

[9]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[10]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[11]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[12]

Antonio Capella. Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1645-1662. doi: 10.3934/cpaa.2011.10.1645

[13]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[14]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[15]

Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335

[16]

Tadeusz Kulczycki, Robert Stańczy. Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2581-2591. doi: 10.3934/dcdsb.2014.19.2581

[17]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[18]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[19]

Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141

[20]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]