2013, 33(2): 921-946. doi: 10.3934/dcds.2013.33.921

Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity

1. 

Department of Mathematics, Xidian University, Xi’an, Shaanxi 710071

2. 

Department of Mathematics, Xidian University, Xi'an, Shaanxi 710071, China

3. 

Department of Applied Mathematics, Xidian University, Xi'an 710071

Received  August 2011 Revised  July 2012 Published  September 2012

This paper is concerned with traveling fronts and entire solutions for a class of monostable partially degenerate reaction-diffusion systems. It is known that the system admits traveling wave solutions. In this paper, we first prove the monotonicity and uniqueness of the traveling wave solutions, and the existence of spatially independent solutions. Combining traveling fronts with different speeds and a spatially independent solution, the existence and various qualitative features of entire solutions are then established by using comparison principle. As applications, we consider a reaction-diffusion model with a quiescent stage in population dynamics and a man-environment-man epidemic model in physiology.
Citation: Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921
References:
[1]

V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases,, J. Math. Biol., 13 (1981), 173. doi: 10.1007/BF00275212.

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433. doi: 10.1090/S0002-9939-04-07432-5.

[3]

X. Chen and J. S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123. doi: 10.1007/s00208-003-0414-0.

[4]

X. Chen and J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation,, J. Differential Equations, 212 (2005), 62. doi: 10.1016/j.jde.2004.10.028.

[5]

X. Chen, J. S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearity,, Proc. R. Soc. Edinb. A, 136 (2006), 1207. doi: 10.1017/S0308210500004959.

[6]

J. Fang and X. Q. Zhao, Monotone wavefronts for partially degenerate reaction diffusion systems,, J. Dynam. Diff. Eqns., 21 (2009), 663. doi: 10.1007/s10884-009-9152-7.

[7]

Y. Fukao, Y. Morita and H. Ninomiya, Some entire solutions of Allen-Cahn equation,, Taiwanese J. Math., 8 (2004), 15.

[8]

Y. J. L. Guo, Entire solutions for a discrete diffusive equation,, J. Math. Anal. Appl., 347 (2008), 450. doi: 10.1016/j.jmaa.2008.03.076.

[9]

J. S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an applicationto discrete diffusive equations,, Discrete Contin. Dyn. Syst., 12 (2005), 193.

[10]

J. S. Guo and C. H. Wu, Entire solutions for a two-component competition system in a lattice,, Tohoku Math. J., 62 (2010), 17. doi: 10.2748/tmj/1270041024.

[11]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment,, Canad. Appl. Math. Quart., 10 (2002), 473.

[12]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation,, Comm. Pure Appl. Math., 52 (1999), 1255. doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.3.CO;2-N.

[13]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation,, Arch. Ration. Mech. Anal., 157 (2001), 91. doi: 10.1007/PL00004238.

[14]

M. A. Lewis and G. Schmitz, Biological invasion of an organism withseparate mobile and stationary states: modeling and analysis,, Forma, 11 (1996), 1.

[15]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion system,, J. Differential Equations, 252 (2012), 4842. doi: 10.1016/j.jde.2012.01.018.

[16]

W. T. Li, Z. C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity,, J. Differential Equations, 245 (2008), 102. doi: 10.1016/j.jde.2008.03.023.

[17]

W. T. Li and S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-III functional response,, Chaos, 7 (2008), 476.

[18]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.1090/S0002-9947-1990-0967316-X.

[19]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations,, J. Dynam. Diff. Eqns., 18 (2006), 841. doi: 10.1007/s10884-006-9046-x.

[20]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217. doi: 10.1137/080723715.

[21]

S. Ruan and J. Wu, Reaction-diffusion equations with inifite delays,, Canad. Appl. Math. Quart., 2 (1994), 485.

[22]

M. X. Wang and G. Y. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay,, Nonlinearity, 23 (2010), 1609. doi: 10.1088/0951-7715/23/7/005.

[23]

Z. C. Wang, W. T. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Diff. Eqns., 20 (2008), 563. doi: 10.1007/s10884-008-9103-8.

[24]

Z. C. Wang, W. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity,, Trans. Amer. Math. Soc., 361 (2009), 2047. doi: 10.1090/S0002-9947-08-04694-1.

[25]

Z. C. Wang, W. T. Li and S. Ruan, Entire solutions in delayed lattice differential equations with monostable nonlinearity,, SIAM J. Math. Anal., 40 (2009), 2392. doi: 10.1137/080727312.

[26]

Z. C. Wang and W. T. Li, Dynamics of a nonlocal delayed reaction-diffusion equation without quasi-monotonicity,, Proc. R. Soc. Edinb. A, 140 (2010), 1081. doi: 10.1017/S0308210509000262.

[27]

S. L. Wu, Entire solutions in a bistable reaction-diffusion system modeling man-environment-man epidemics,, Nonlinear Anal. RWA, 13 (2012), 1991.

[28]

D. Xu and X. Q. Zhao, Erratum to "Bistable waves in an epidemic model'',, J. Dynam. Diff. Eqns., 17 (2005), 219. doi: 10.1007/s10884-005-6294-0.

[29]

H. Yagisita, Back and global solutions characterizing annihilation dynamics of traveling fronts,, Publ. Res. Inst. Math. Sci., 39 (2003), 117. doi: 10.2977/prims/1145476150.

[30]

K. Zhang and X. Q. Zhao, Asymptotic behavior of a reaction-diffusion model with a quiescent stage,, Proc. R. Soc. Lond. A, 463 (2007), 1029. doi: 10.1098/rspa.2006.1806.

[31]

P. A. Zhang and W. T. Li, Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage,, Nonlinear Anal. TMA, 72 (2010), 2178. doi: 10.1016/j.na.2009.10.016.

[32]

X. Q. Zhao and W. Wang, Fisher waves in an epidemic model,, Discrete Contin. Dyn. Syst. B, 4 (2004), 1117.

show all references

References:
[1]

V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases,, J. Math. Biol., 13 (1981), 173. doi: 10.1007/BF00275212.

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433. doi: 10.1090/S0002-9939-04-07432-5.

[3]

X. Chen and J. S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123. doi: 10.1007/s00208-003-0414-0.

[4]

X. Chen and J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation,, J. Differential Equations, 212 (2005), 62. doi: 10.1016/j.jde.2004.10.028.

[5]

X. Chen, J. S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearity,, Proc. R. Soc. Edinb. A, 136 (2006), 1207. doi: 10.1017/S0308210500004959.

[6]

J. Fang and X. Q. Zhao, Monotone wavefronts for partially degenerate reaction diffusion systems,, J. Dynam. Diff. Eqns., 21 (2009), 663. doi: 10.1007/s10884-009-9152-7.

[7]

Y. Fukao, Y. Morita and H. Ninomiya, Some entire solutions of Allen-Cahn equation,, Taiwanese J. Math., 8 (2004), 15.

[8]

Y. J. L. Guo, Entire solutions for a discrete diffusive equation,, J. Math. Anal. Appl., 347 (2008), 450. doi: 10.1016/j.jmaa.2008.03.076.

[9]

J. S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an applicationto discrete diffusive equations,, Discrete Contin. Dyn. Syst., 12 (2005), 193.

[10]

J. S. Guo and C. H. Wu, Entire solutions for a two-component competition system in a lattice,, Tohoku Math. J., 62 (2010), 17. doi: 10.2748/tmj/1270041024.

[11]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment,, Canad. Appl. Math. Quart., 10 (2002), 473.

[12]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation,, Comm. Pure Appl. Math., 52 (1999), 1255. doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.3.CO;2-N.

[13]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation,, Arch. Ration. Mech. Anal., 157 (2001), 91. doi: 10.1007/PL00004238.

[14]

M. A. Lewis and G. Schmitz, Biological invasion of an organism withseparate mobile and stationary states: modeling and analysis,, Forma, 11 (1996), 1.

[15]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion system,, J. Differential Equations, 252 (2012), 4842. doi: 10.1016/j.jde.2012.01.018.

[16]

W. T. Li, Z. C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity,, J. Differential Equations, 245 (2008), 102. doi: 10.1016/j.jde.2008.03.023.

[17]

W. T. Li and S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-III functional response,, Chaos, 7 (2008), 476.

[18]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.1090/S0002-9947-1990-0967316-X.

[19]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations,, J. Dynam. Diff. Eqns., 18 (2006), 841. doi: 10.1007/s10884-006-9046-x.

[20]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217. doi: 10.1137/080723715.

[21]

S. Ruan and J. Wu, Reaction-diffusion equations with inifite delays,, Canad. Appl. Math. Quart., 2 (1994), 485.

[22]

M. X. Wang and G. Y. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay,, Nonlinearity, 23 (2010), 1609. doi: 10.1088/0951-7715/23/7/005.

[23]

Z. C. Wang, W. T. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Diff. Eqns., 20 (2008), 563. doi: 10.1007/s10884-008-9103-8.

[24]

Z. C. Wang, W. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity,, Trans. Amer. Math. Soc., 361 (2009), 2047. doi: 10.1090/S0002-9947-08-04694-1.

[25]

Z. C. Wang, W. T. Li and S. Ruan, Entire solutions in delayed lattice differential equations with monostable nonlinearity,, SIAM J. Math. Anal., 40 (2009), 2392. doi: 10.1137/080727312.

[26]

Z. C. Wang and W. T. Li, Dynamics of a nonlocal delayed reaction-diffusion equation without quasi-monotonicity,, Proc. R. Soc. Edinb. A, 140 (2010), 1081. doi: 10.1017/S0308210509000262.

[27]

S. L. Wu, Entire solutions in a bistable reaction-diffusion system modeling man-environment-man epidemics,, Nonlinear Anal. RWA, 13 (2012), 1991.

[28]

D. Xu and X. Q. Zhao, Erratum to "Bistable waves in an epidemic model'',, J. Dynam. Diff. Eqns., 17 (2005), 219. doi: 10.1007/s10884-005-6294-0.

[29]

H. Yagisita, Back and global solutions characterizing annihilation dynamics of traveling fronts,, Publ. Res. Inst. Math. Sci., 39 (2003), 117. doi: 10.2977/prims/1145476150.

[30]

K. Zhang and X. Q. Zhao, Asymptotic behavior of a reaction-diffusion model with a quiescent stage,, Proc. R. Soc. Lond. A, 463 (2007), 1029. doi: 10.1098/rspa.2006.1806.

[31]

P. A. Zhang and W. T. Li, Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage,, Nonlinear Anal. TMA, 72 (2010), 2178. doi: 10.1016/j.na.2009.10.016.

[32]

X. Q. Zhao and W. Wang, Fisher waves in an epidemic model,, Discrete Contin. Dyn. Syst. B, 4 (2004), 1117.

[1]

Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516

[2]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[3]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[4]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[5]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[6]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[7]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[8]

Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083

[9]

Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168

[10]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[11]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[12]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[13]

Ana Carpio, Gema Duro. Explosive behavior in spatially discrete reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 693-711. doi: 10.3934/dcdsb.2009.12.693

[14]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[15]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[16]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[17]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[18]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[19]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[20]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]