2014, 34(3): 1147-1170. doi: 10.3934/dcds.2014.34.1147

Discrete gradient methods for preserving a first integral of an ordinary differential equation

1. 

Department of Physics, University of Otago, PO Box 56, Dunedin 9054, New Zealand

2. 

Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086

Received  November 2012 Revised  February 2013 Published  August 2013

In this paper we consider discrete gradient methods for approximating the solution and preserving a first integral (also called a constant of motion) of autonomous ordinary differential equations. We prove under mild conditions for a large class of discrete gradient methods that the numerical solution exists and is locally unique, and that for arbitrary $p\in \mathbb{N}$ we may construct a method that is of order $p$. In the proofs of these results we also show that the constants in the time step constraint and the error bounds may be chosen independently from the distance to critical points of the first integral.
    In the case when the first integral is quadratic, for arbitrary $p \in \mathbb{N}$, we have devised a new method that is linearly implicit at each time step and of order $p$. A numerical example suggests that this new method has advantages in terms of efficiency.
Citation: Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147
References:
[1]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients,, J. Phys. A, 44 (2011). doi: 10.1088/1751-8113/44/30/305205.

[2]

W. Gautschi, "Numerical Analysis. An Introduction,", Birkhäuser, (1997).

[3]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Science, 6 (1996), 449. doi: 10.1007/BF02440162.

[4]

E. Hairer, Symmetric projection methods for differential equations on manifolds,, BIT, 40 (2000), 726. doi: 10.1023/A:1022344502818.

[5]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics, 31 (2006).

[6]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", Springer Series in Computational Mathematics, 8 (1993).

[7]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons Inc., (1964).

[8]

V. I. Istrăţescu, "Fixed Point Theory, an Introduction,", Mathematics and its Applications, 7 (1981).

[9]

Toahiaki Itoh and Kanji Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients,, J. Comput. Phys., 76 (1988), 85. doi: 10.1016/0021-9991(88)90132-5.

[10]

Robert I. McLachlan, G. R. W. Quispel and Nicolas Robidoux, Geometric integration using discrete gradients,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021. doi: 10.1098/rsta.1999.0363.

[11]

R. A. Norton, D. I. McLaren, G. R. W. Quispel, A. Stern and A. Zanna, Projection methods and discrete gradient methods for preserving first integrals of ODEs,, preprint, ().

[12]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658. doi: 10.2307/2313800.

[13]

Marco Papi, On the domain of the implicit function and applications,, J. Inequal. Appl., 2005 (2005), 221. doi: 10.1155/JIA.2005.221.

[14]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral,, Physics Letters. A, 218 (1996), 223. doi: 10.1016/0375-9601(96)00403-3.

[15]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/4/045206.

[16]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral,, J. Phys. A, 29 (1996). doi: 10.1088/0305-4470/29/13/006.

show all references

References:
[1]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients,, J. Phys. A, 44 (2011). doi: 10.1088/1751-8113/44/30/305205.

[2]

W. Gautschi, "Numerical Analysis. An Introduction,", Birkhäuser, (1997).

[3]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Science, 6 (1996), 449. doi: 10.1007/BF02440162.

[4]

E. Hairer, Symmetric projection methods for differential equations on manifolds,, BIT, 40 (2000), 726. doi: 10.1023/A:1022344502818.

[5]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics, 31 (2006).

[6]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", Springer Series in Computational Mathematics, 8 (1993).

[7]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons Inc., (1964).

[8]

V. I. Istrăţescu, "Fixed Point Theory, an Introduction,", Mathematics and its Applications, 7 (1981).

[9]

Toahiaki Itoh and Kanji Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients,, J. Comput. Phys., 76 (1988), 85. doi: 10.1016/0021-9991(88)90132-5.

[10]

Robert I. McLachlan, G. R. W. Quispel and Nicolas Robidoux, Geometric integration using discrete gradients,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021. doi: 10.1098/rsta.1999.0363.

[11]

R. A. Norton, D. I. McLaren, G. R. W. Quispel, A. Stern and A. Zanna, Projection methods and discrete gradient methods for preserving first integrals of ODEs,, preprint, ().

[12]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658. doi: 10.2307/2313800.

[13]

Marco Papi, On the domain of the implicit function and applications,, J. Inequal. Appl., 2005 (2005), 221. doi: 10.1155/JIA.2005.221.

[14]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral,, Physics Letters. A, 218 (1996), 223. doi: 10.1016/0375-9601(96)00403-3.

[15]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/4/045206.

[16]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral,, J. Phys. A, 29 (1996). doi: 10.1088/0305-4470/29/13/006.

[1]

Lili Ju, Xinfeng Liu, Wei Leng. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1667-1687. doi: 10.3934/dcdsb.2014.19.1667

[2]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[3]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[4]

Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189

[5]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[6]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[7]

Domokos Szász. Algebro-geometric methods for hard ball systems. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 427-443. doi: 10.3934/dcds.2008.22.427

[8]

Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295

[9]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[10]

Zoltán Horváth, Yunfei Song, Tamás Terlaky. Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2997-3013. doi: 10.3934/dcds.2015.35.2997

[11]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[12]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[13]

Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467

[14]

Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1

[15]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[16]

Ruijun Zhao, Yong-Tao Zhang, Shanqin Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019041

[17]

Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603

[18]

Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116

[19]

Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222

[20]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]