January  2014, 34(1): 121-143. doi: 10.3934/dcds.2014.34.121

Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1

2. 

IMATH, EA 2134, Université du Sud Toulon-Var, BP 132, 83957 La Garde, France

3. 

Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, China

Received  August 2012 Published  June 2013

We consider the compressible Navier-Stokes system coupled with the Maxwell equations governing the time evolution of the magnetic field. We introduce a relative entropy functional along with the related concept of dissipative solution. As an application of the theory, we show that for small values of the Mach number and large Reynolds number, the global in time weak (dissipative) solutions converge to the ideal MHD system describing the motion of an incompressible, inviscid, and electrically conducting fluid. The proof is based on frequency localized Strichartz estimates for the Neumann Laplacean on unbounded domains.
Citation: Eduard Feireisl, Antonin Novotny, Yongzhong Sun. Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 121-143. doi: 10.3934/dcds.2014.34.121
References:
[1]

F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks,, SIAM J. Math. Anal., 36 (2005), 1807. doi: 10.1137/S0036141003431554.

[2]

N. Burq, Global Strichartz estimates for nontrapping geometries: About an article by H. F. Smith and C. D. Sogge: "Global Strichartz estimates for nontrapping perturbations of the Laplacian,'', Comm. Partial Differential Equations, 28 (2003), 1675. doi: 10.1081/PDE-120024528.

[3]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409. doi: 10.1006/jfan.2000.3687.

[4]

C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167. doi: 10.1007/BF00250353.

[5]

R. Danchin, Low Mach number limit for viscous compressible flows,, M2AN Math. Model Numer. Anal., 39 (2005), 459. doi: 10.1051/m2an:2005019.

[6]

Y. Dermenjian and J.-C. Guillot, Scattering of elastic waves in a perturbed isotropic half space with a free boundary. The limiting absorption principle,, Math. Methods Appl. Sci., 10 (1988), 87. doi: 10.1002/mma.1670100202.

[7]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977. doi: 10.1080/03605309708821291.

[8]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars,, Commun. Math. Phys., 266 (2006), 595. doi: 10.1007/s00220-006-0052-y.

[9]

J. Edward and D. Pravica, Bounds on resonances for the Laplacian on perturbations of half-space,, SIAM J. Math. Anal., 30 (1999), 1175. doi: 10.1137/S003614109733172X.

[10]

D. M. Èĭdus, The principle of limiting amplitude,, (in Russian) Usp. Mat. Nauk, 24 (1969), 91.

[11]

E. Feireisl, Incompressible limits and propagation of acoustic waves in large domains with boundaries,, Commun. Math. Phys., 294 (2010), 73. doi: 10.1007/s00220-009-0954-6.

[12]

E. Feireisl, Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions,, Commun. Partial Differential Equations, 36 (2011), 1778. doi: 10.1080/03605302.2011.602168.

[13]

E. Feireisl, Low Mach number limits of compressible rotating fluids,, J. Math. Fluid Mechanics, 14 (2012), 61. doi: 10.1007/s00021-010-0043-9.

[14]

E. Feireisl and A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., 204 (2012), 683. doi: 10.1007/s00205-011-0490-3.

[15]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids,, J. Math. Fluid Mech., 3 (2001), 358. doi: 10.1007/PL00000976.

[16]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., 60 (2011), 611. doi: 10.1512/iumj.2011.60.4406.

[17]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I,", Springer-Verlag, (1994).

[18]

I. Gallagher, Résultats récents sur la limite incompressible,, Séminaire Bourbaki. Vol. 2003/2004, (2005), 29.

[19]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., 13 (2011), 137. doi: 10.1007/s00021-009-0006-1.

[20]

X. P. Hu and D. H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272. doi: 10.1137/080723983.

[21]

S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions,, Comm. Math. Phys., 297 (2010), 371. doi: 10.1007/s00220-010-0992-0.

[22]

S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients,, SIAM J. Math. Anal., 42 (2010), 2539. doi: 10.1137/100785168.

[23]

T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation,, Arch. Rational Mech. Anal., 25 (1967), 188.

[24]

T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow,, J. Funct. Anal., 56 (1984), 15. doi: 10.1016/0022-1236(84)90024-7.

[25]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.

[26]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405.

[27]

H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations,, Tohoku Math. J. (2), 41 (1989), 471. doi: 10.2748/tmj/1178227774.

[28]

P. Kukučka, Singular limits of the equations of magnetohydrodynamics,, J. Math. Fluid Mech., 13 (2011), 173. doi: 10.1007/s00021-009-0007-0.

[29]

Y.-S. Kwon and K. Trivisa, On the incompressible limits for the full magnetohydrodynamics flows,, J. Differential Equations, 251 (2011), 1990. doi: 10.1016/j.jde.2011.04.016.

[30]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).

[31]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid,, J. Math. Pures Appl. (9), 77 (1998), 585. doi: 10.1016/S0021-7824(98)80139-6.

[32]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199. doi: 10.1016/S0294-1449(00)00123-2.

[33]

N. Masmoudi, Examples of singular limits in hydrodynamics,, in, (2007). doi: 10.1016/S1874-5717(07)80006-5.

[34]

S. Schochet, The mathematical theory of low Mach number flows,, M2ANMath. Model Numer. Anal., 39 (2005), 441. doi: 10.1051/m2an:2005017.

[35]

P. Secchi, On the equations of ideal incompressible magnetohydrodynamics,, Rend. Sem. Univ. Padova, 90 (1993), 103.

[36]

H. F. Smith and C. D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian,, Comm. Partial Differential Equations, 25 (2000), 2171. doi: 10.1080/03605300008821581.

[37]

R. S. Strichartz, A priori estimates for the wave equation and some applications,, J. Functional Analysis, 5 (1970), 218.

show all references

References:
[1]

F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks,, SIAM J. Math. Anal., 36 (2005), 1807. doi: 10.1137/S0036141003431554.

[2]

N. Burq, Global Strichartz estimates for nontrapping geometries: About an article by H. F. Smith and C. D. Sogge: "Global Strichartz estimates for nontrapping perturbations of the Laplacian,'', Comm. Partial Differential Equations, 28 (2003), 1675. doi: 10.1081/PDE-120024528.

[3]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Funct. Anal., 179 (2001), 409. doi: 10.1006/jfan.2000.3687.

[4]

C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167. doi: 10.1007/BF00250353.

[5]

R. Danchin, Low Mach number limit for viscous compressible flows,, M2AN Math. Model Numer. Anal., 39 (2005), 459. doi: 10.1051/m2an:2005019.

[6]

Y. Dermenjian and J.-C. Guillot, Scattering of elastic waves in a perturbed isotropic half space with a free boundary. The limiting absorption principle,, Math. Methods Appl. Sci., 10 (1988), 87. doi: 10.1002/mma.1670100202.

[7]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977. doi: 10.1080/03605309708821291.

[8]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars,, Commun. Math. Phys., 266 (2006), 595. doi: 10.1007/s00220-006-0052-y.

[9]

J. Edward and D. Pravica, Bounds on resonances for the Laplacian on perturbations of half-space,, SIAM J. Math. Anal., 30 (1999), 1175. doi: 10.1137/S003614109733172X.

[10]

D. M. Èĭdus, The principle of limiting amplitude,, (in Russian) Usp. Mat. Nauk, 24 (1969), 91.

[11]

E. Feireisl, Incompressible limits and propagation of acoustic waves in large domains with boundaries,, Commun. Math. Phys., 294 (2010), 73. doi: 10.1007/s00220-009-0954-6.

[12]

E. Feireisl, Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions,, Commun. Partial Differential Equations, 36 (2011), 1778. doi: 10.1080/03605302.2011.602168.

[13]

E. Feireisl, Low Mach number limits of compressible rotating fluids,, J. Math. Fluid Mechanics, 14 (2012), 61. doi: 10.1007/s00021-010-0043-9.

[14]

E. Feireisl and A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., 204 (2012), 683. doi: 10.1007/s00205-011-0490-3.

[15]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids,, J. Math. Fluid Mech., 3 (2001), 358. doi: 10.1007/PL00000976.

[16]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., 60 (2011), 611. doi: 10.1512/iumj.2011.60.4406.

[17]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I,", Springer-Verlag, (1994).

[18]

I. Gallagher, Résultats récents sur la limite incompressible,, Séminaire Bourbaki. Vol. 2003/2004, (2005), 29.

[19]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., 13 (2011), 137. doi: 10.1007/s00021-009-0006-1.

[20]

X. P. Hu and D. H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272. doi: 10.1137/080723983.

[21]

S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions,, Comm. Math. Phys., 297 (2010), 371. doi: 10.1007/s00220-010-0992-0.

[22]

S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients,, SIAM J. Math. Anal., 42 (2010), 2539. doi: 10.1137/100785168.

[23]

T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation,, Arch. Rational Mech. Anal., 25 (1967), 188.

[24]

T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow,, J. Funct. Anal., 56 (1984), 15. doi: 10.1016/0022-1236(84)90024-7.

[25]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.

[26]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405.

[27]

H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations,, Tohoku Math. J. (2), 41 (1989), 471. doi: 10.2748/tmj/1178227774.

[28]

P. Kukučka, Singular limits of the equations of magnetohydrodynamics,, J. Math. Fluid Mech., 13 (2011), 173. doi: 10.1007/s00021-009-0007-0.

[29]

Y.-S. Kwon and K. Trivisa, On the incompressible limits for the full magnetohydrodynamics flows,, J. Differential Equations, 251 (2011), 1990. doi: 10.1016/j.jde.2011.04.016.

[30]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).

[31]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid,, J. Math. Pures Appl. (9), 77 (1998), 585. doi: 10.1016/S0021-7824(98)80139-6.

[32]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199. doi: 10.1016/S0294-1449(00)00123-2.

[33]

N. Masmoudi, Examples of singular limits in hydrodynamics,, in, (2007). doi: 10.1016/S1874-5717(07)80006-5.

[34]

S. Schochet, The mathematical theory of low Mach number flows,, M2ANMath. Model Numer. Anal., 39 (2005), 441. doi: 10.1051/m2an:2005017.

[35]

P. Secchi, On the equations of ideal incompressible magnetohydrodynamics,, Rend. Sem. Univ. Padova, 90 (1993), 103.

[36]

H. F. Smith and C. D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian,, Comm. Partial Differential Equations, 25 (2000), 2171. doi: 10.1080/03605300008821581.

[37]

R. S. Strichartz, A priori estimates for the wave equation and some applications,, J. Functional Analysis, 5 (1970), 218.

[1]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[2]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[3]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[4]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[5]

Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case. Networks & Heterogeneous Media, 2016, 11 (2) : 313-330. doi: 10.3934/nhm.2016.11.313

[6]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[7]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2019068

[8]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[9]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[10]

Paola Trebeschi. On the slightly compressible MHD system in the half-plane. Communications on Pure & Applied Analysis, 2004, 3 (1) : 97-113. doi: 10.3934/cpaa.2004.3.97

[11]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

[12]

Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic & Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195

[13]

Gyungsoo Woo, Young-Sam Kwon. Incompressible limit for the full magnetohydrodynamics flows under Strong Stratification on unbounded domains. Communications on Pure & Applied Analysis, 2014, 13 (1) : 135-155. doi: 10.3934/cpaa.2014.13.135

[14]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[15]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[16]

Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069

[17]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[18]

Yunming Zhou, Desheng Shang, Tonghua Zhang. Seventeen limit cycles bifurcations of a fifth system. Conference Publications, 2007, 2007 (Special) : 1070-1081. doi: 10.3934/proc.2007.2007.1070

[19]

Maoan Han, Yuhai Wu, Ping Bi. A new cubic system having eleven limit cycles. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 675-686. doi: 10.3934/dcds.2005.12.675

[20]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic & Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]