April  2014, 34(4): 1285-1300. doi: 10.3934/dcds.2014.34.1285

Approximation of a simple Navier-Stokes model by monotonic rearrangement

1. 

CMLS, Ecole Polytechnique, Palaiseau, FR-91128, France

Received  October 2012 Published  October 2013

We consider the very simple Navier-Stokes model for compressible fluids in one space dimension, where there is no temperature equation and both the pressure and the viscosity are proportional to the density. We show that the resolution of this Navier-Stokes system can be reduced, through the crucial intervention of a monotonic rearrangement operator, to the time discretization of a very elementary differential equation with noise. In addition, our result can be easily extended to a related Navier-Stokes-Poisson system.
Citation: Yann Brenier. Approximation of a simple Navier-Stokes model by monotonic rearrangement. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1285-1300. doi: 10.3934/dcds.2014.34.1285
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008).

[2]

A. Blanchet, E. Carlen and J. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Funct. Anal., 262 (2012), 2142. doi: 10.1016/j.jfa.2011.12.012.

[3]

F. Bolley, Y. Brenier and G. Loeper, Contractive metrics for scalar conservation laws,, Journal of Hyperbolic Differential Equations, 2 (2005), 91. doi: 10.1142/S0219891605000397.

[4]

Y. Brenier, Une application de la symétrisation de Steiner aux équations hyperboliques: La méthode de transport et écroulement,, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 563.

[5]

Y. Brenier, Résolution d'équations d'évolution quasilinéaires en dimension $N$ d'espace à l'aide d'équations linéaires en dimension $N+1$,, J. Differential Equations, 50 (1983), 375. doi: 10.1016/0022-0396(83)90067-0.

[6]

Y. Brenier, Averaged multivalued solutions for scalar conservation laws,, SIAM J. Numer. Anal., 21 (1984), 1013. doi: 10.1137/0721063.

[7]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,, Comm. Pure Appl. Math., 44 (1991), 375. doi: 10.1002/cpa.3160440402.

[8]

Y. Brenier, A particle method for nonlinear convection diffusion equations in dimension one,, J. Comput. Appl. Math., 31 (1990), 35. doi: 10.1016/0377-0427(90)90334-V.

[9]

Y. Brenier, Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics,, Methods Appl. Anal., 11 (2004), 515.

[10]

Y. Brenier, $L^2$ formulation of multidimensional scalar conservation laws,, Arch. Rational Mech. Anal., 193 (2009), 1. doi: 10.1007/s00205-009-0214-0.

[11]

Y. Brenier, Hilbertian approaches to some non-linear conservation laws,, in, 526 (2010), 19. doi: 10.1090/conm/526/10375.

[12]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions,, J. Math. Pures Appl. (9), 99 (2013), 577. doi: 10.1016/j.matpur.2012.09.013.

[13]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", (French) North-Holland Mathematics Studies, (1973).

[14]

C. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325 (2000). doi: 10.1007/3-540-29089-3_14.

[15]

F. Demengel and R. Temam, Convex functions of a measure and applications,, Indiana Univ. Math. J., 33 (1984), 673. doi: 10.1512/iumj.1984.33.33036.

[16]

A. Chorin, Numerical methods for use in combustion modeling,, in, (1980), 229.

[17]

W. Gangbo and M. Westdickenberg, Optimal transport for the system of isentropic Euler equations,, Comm. Partial Differential Equations, 34 (2009), 1041. doi: 10.1080/03605300902892345.

[18]

L. Giacomelli and F. Otto, Variational formulation for the lubrication approximation of the Hele-Shaw flow,, Calc. Var. Partial Differential Equations, 13 (2001), 377. doi: 10.1007/s005260000077.

[19]

Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasilinear equations,, Duke Math. J., 50 (1983), 505. doi: 10.1215/S0012-7094-83-05022-6.

[20]

N. Gigli and S. Mosconi, A variational approach to the Navier-Stokes equations,, Bull. Sci. Math., 136 (2012), 256. doi: 10.1016/j.bulsci.2012.01.001.

[21]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[22]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340. doi: 10.1137/090750809.

[23]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, 58 (2003). doi: 10.1007/b12016.

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008).

[2]

A. Blanchet, E. Carlen and J. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Funct. Anal., 262 (2012), 2142. doi: 10.1016/j.jfa.2011.12.012.

[3]

F. Bolley, Y. Brenier and G. Loeper, Contractive metrics for scalar conservation laws,, Journal of Hyperbolic Differential Equations, 2 (2005), 91. doi: 10.1142/S0219891605000397.

[4]

Y. Brenier, Une application de la symétrisation de Steiner aux équations hyperboliques: La méthode de transport et écroulement,, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 563.

[5]

Y. Brenier, Résolution d'équations d'évolution quasilinéaires en dimension $N$ d'espace à l'aide d'équations linéaires en dimension $N+1$,, J. Differential Equations, 50 (1983), 375. doi: 10.1016/0022-0396(83)90067-0.

[6]

Y. Brenier, Averaged multivalued solutions for scalar conservation laws,, SIAM J. Numer. Anal., 21 (1984), 1013. doi: 10.1137/0721063.

[7]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,, Comm. Pure Appl. Math., 44 (1991), 375. doi: 10.1002/cpa.3160440402.

[8]

Y. Brenier, A particle method for nonlinear convection diffusion equations in dimension one,, J. Comput. Appl. Math., 31 (1990), 35. doi: 10.1016/0377-0427(90)90334-V.

[9]

Y. Brenier, Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics,, Methods Appl. Anal., 11 (2004), 515.

[10]

Y. Brenier, $L^2$ formulation of multidimensional scalar conservation laws,, Arch. Rational Mech. Anal., 193 (2009), 1. doi: 10.1007/s00205-009-0214-0.

[11]

Y. Brenier, Hilbertian approaches to some non-linear conservation laws,, in, 526 (2010), 19. doi: 10.1090/conm/526/10375.

[12]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions,, J. Math. Pures Appl. (9), 99 (2013), 577. doi: 10.1016/j.matpur.2012.09.013.

[13]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", (French) North-Holland Mathematics Studies, (1973).

[14]

C. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325 (2000). doi: 10.1007/3-540-29089-3_14.

[15]

F. Demengel and R. Temam, Convex functions of a measure and applications,, Indiana Univ. Math. J., 33 (1984), 673. doi: 10.1512/iumj.1984.33.33036.

[16]

A. Chorin, Numerical methods for use in combustion modeling,, in, (1980), 229.

[17]

W. Gangbo and M. Westdickenberg, Optimal transport for the system of isentropic Euler equations,, Comm. Partial Differential Equations, 34 (2009), 1041. doi: 10.1080/03605300902892345.

[18]

L. Giacomelli and F. Otto, Variational formulation for the lubrication approximation of the Hele-Shaw flow,, Calc. Var. Partial Differential Equations, 13 (2001), 377. doi: 10.1007/s005260000077.

[19]

Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasilinear equations,, Duke Math. J., 50 (1983), 505. doi: 10.1215/S0012-7094-83-05022-6.

[20]

N. Gigli and S. Mosconi, A variational approach to the Navier-Stokes equations,, Bull. Sci. Math., 136 (2012), 256. doi: 10.1016/j.bulsci.2012.01.001.

[21]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[22]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340. doi: 10.1137/090750809.

[23]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, 58 (2003). doi: 10.1007/b12016.

[1]

Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397

[2]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

[3]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-14. doi: 10.3934/dcdss.2020071

[4]

Paolo Podio-Guidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1393-1411. doi: 10.3934/dcdss.2017074

[5]

Karthik Elamvazhuthi, Piyush Grover. Optimal transport over nonlinear systems via infinitesimal generators on graphs. Journal of Computational Dynamics, 2018, 5 (1&2) : 1-32. doi: 10.3934/jcd.2018001

[6]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[7]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[8]

François Gay-Balmaz, Tudor S. Ratiu. Clebsch optimal control formulation in mechanics. Journal of Geometric Mechanics, 2011, 3 (1) : 41-79. doi: 10.3934/jgm.2011.3.41

[9]

Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904

[10]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[11]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[12]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[13]

Paul Pegon, Filippo Santambrogio, Davide Piazzoli. Full characterization of optimal transport plans for concave costs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6113-6132. doi: 10.3934/dcds.2015.35.6113

[14]

Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

[15]

Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations & Control Theory, 2014, 3 (3) : 541-555. doi: 10.3934/eect.2014.3.541

[16]

Yangang Chen, Justin W. L. Wan. Numerical method for image registration model based on optimal mass transport. Inverse Problems & Imaging, 2018, 12 (2) : 401-432. doi: 10.3934/ipi.2018018

[17]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[18]

Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1533-1574. doi: 10.3934/dcds.2014.34.1533

[19]

Ling Xu, Yi Jiang. Cilium height difference between strokes is more effective in driving fluid transport in mucociliary clearance: A numerical study. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1107-1126. doi: 10.3934/mbe.2015.12.1107

[20]

Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic & Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]