April  2014, 34(4): 1481-1509. doi: 10.3934/dcds.2014.34.1481

The Abresch-Gromoll inequality in a non-smooth setting

1. 

Université de Nice, Mathématiques, Parc Valrose, 06108 Nice, France

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy

Received  September 2012 Revised  November 2012 Published  October 2013

We prove that the Abresch-Gromoll inequality holds on infinitesimally Hilbertian $CD(K,N)$ spaces in the same form as the one available on smooth Riemannian manifolds.
Citation: Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481
References:
[1]

U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature,, J. Amer. Math. Soc., 3 (1990), 355. doi: 10.1090/S0894-0347-1990-1030656-6. Google Scholar

[2]

L. Ambrosio and N. Gigli, User's guide to optimal transport theory,, to appear in the CIME Lecture Notes in Mathematics, (). Google Scholar

[3]

L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure,, accepted in Trans. Amer. Math. Soc., (2012). Google Scholar

[4]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008). Google Scholar

[5]

______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, accepted in Invent. Math., (2013). Google Scholar

[6]

______, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces,, accepted in Rev. Mat. Iberoam., (2012). Google Scholar

[7]

______, Metric measure spaces with Riemannian Ricci curvature bounded from below,, submitted, (2011). Google Scholar

[8]

A. Björn and J. Björn, "Nonlinear Potential Theory on Metric Spaces,", EMS Tracts in Mathematics, 17 (2011). doi: 10.4171/099. Google Scholar

[9]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428. doi: 10.1007/s000390050094. Google Scholar

[10]

J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products,, Ann. of Math. (2), 144 (1996), 189. doi: 10.2307/2118589. Google Scholar

[11]

N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability,, Calc. Var. PDE, 39 (2010), 101. doi: 10.1007/s00526-009-0303-9. Google Scholar

[12]

______, On the differential structure of metric measure spaces and applications,, accepted in Memoirs of the AMS, (2013). Google Scholar

[13]

N. Gigli, K. Kuwada and S.-i. Ohta, Heat flow on Alexandrov spaces,, Communications on Pure and Applied Mathematics, 66 (2013), 307. doi: 10.1002/cpa.21431. Google Scholar

[14]

N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces,, Journal de Mathématiques Pures et Appliquées, (2013). doi: 10.1016/j.matpur.2013.01.011. Google Scholar

[15]

N. Gigli, A. Mondino and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications,, preprint, (2013). Google Scholar

[16]

J. Lott and C. Villani, Weak curvature bounds and functional inequalities,, J. Funct. Anal., 245 (2007), 311. doi: 10.1016/j.jfa.2006.10.018. Google Scholar

[17]

______, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math. (2), 169 (2009), 903. doi: 10.4007/annals.2009.169.903. Google Scholar

[18]

T. Rajala, Local Poincaré inequalities from stable curvature conditions in metric spaces,, Calculus of Variations and Partial Differential Equations, 44 (2012), 477. doi: 10.1007/s00526-011-0442-7. Google Scholar

[19]

Z. Shen, The non-linear laplacian for Finsler manifolds,, in, 459 (1998), 187. Google Scholar

[20]

K.-T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65. doi: 10.1007/s11511-006-0002-8. Google Scholar

[21]

______, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133. Google Scholar

[22]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009). doi: 10.1007/978-3-540-71050-9. Google Scholar

[23]

H. Zhang and X. Zhu, On a new definition of Ricci curvature on Alexandrov spaces,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1949. doi: 10.1016/S0252-9602(10)60185-3. Google Scholar

show all references

References:
[1]

U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature,, J. Amer. Math. Soc., 3 (1990), 355. doi: 10.1090/S0894-0347-1990-1030656-6. Google Scholar

[2]

L. Ambrosio and N. Gigli, User's guide to optimal transport theory,, to appear in the CIME Lecture Notes in Mathematics, (). Google Scholar

[3]

L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure,, accepted in Trans. Amer. Math. Soc., (2012). Google Scholar

[4]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008). Google Scholar

[5]

______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, accepted in Invent. Math., (2013). Google Scholar

[6]

______, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces,, accepted in Rev. Mat. Iberoam., (2012). Google Scholar

[7]

______, Metric measure spaces with Riemannian Ricci curvature bounded from below,, submitted, (2011). Google Scholar

[8]

A. Björn and J. Björn, "Nonlinear Potential Theory on Metric Spaces,", EMS Tracts in Mathematics, 17 (2011). doi: 10.4171/099. Google Scholar

[9]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428. doi: 10.1007/s000390050094. Google Scholar

[10]

J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products,, Ann. of Math. (2), 144 (1996), 189. doi: 10.2307/2118589. Google Scholar

[11]

N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability,, Calc. Var. PDE, 39 (2010), 101. doi: 10.1007/s00526-009-0303-9. Google Scholar

[12]

______, On the differential structure of metric measure spaces and applications,, accepted in Memoirs of the AMS, (2013). Google Scholar

[13]

N. Gigli, K. Kuwada and S.-i. Ohta, Heat flow on Alexandrov spaces,, Communications on Pure and Applied Mathematics, 66 (2013), 307. doi: 10.1002/cpa.21431. Google Scholar

[14]

N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces,, Journal de Mathématiques Pures et Appliquées, (2013). doi: 10.1016/j.matpur.2013.01.011. Google Scholar

[15]

N. Gigli, A. Mondino and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications,, preprint, (2013). Google Scholar

[16]

J. Lott and C. Villani, Weak curvature bounds and functional inequalities,, J. Funct. Anal., 245 (2007), 311. doi: 10.1016/j.jfa.2006.10.018. Google Scholar

[17]

______, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math. (2), 169 (2009), 903. doi: 10.4007/annals.2009.169.903. Google Scholar

[18]

T. Rajala, Local Poincaré inequalities from stable curvature conditions in metric spaces,, Calculus of Variations and Partial Differential Equations, 44 (2012), 477. doi: 10.1007/s00526-011-0442-7. Google Scholar

[19]

Z. Shen, The non-linear laplacian for Finsler manifolds,, in, 459 (1998), 187. Google Scholar

[20]

K.-T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65. doi: 10.1007/s11511-006-0002-8. Google Scholar

[21]

______, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133. Google Scholar

[22]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009). doi: 10.1007/978-3-540-71050-9. Google Scholar

[23]

H. Zhang and X. Zhu, On a new definition of Ricci curvature on Alexandrov spaces,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1949. doi: 10.1016/S0252-9602(10)60185-3. Google Scholar

[1]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[2]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[3]

Paul W. Y. Lee, Chengbo Li, Igor Zelenko. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 303-321. doi: 10.3934/dcds.2016.36.303

[4]

Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065

[5]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[6]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[7]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[8]

Jean-Marc Couveignes, Reynald Lercier. The geometry of some parameterizations and encodings. Advances in Mathematics of Communications, 2014, 8 (4) : 437-458. doi: 10.3934/amc.2014.8.437

[9]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

[10]

Katarzyna Grabowska, Paweƚ Urbański. Geometry of Routh reduction. Journal of Geometric Mechanics, 2019, 11 (1) : 23-44. doi: 10.3934/jgm.2019002

[11]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[12]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[13]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[14]

Bang-Xian Han. New characterizations of Ricci curvature on RCD metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4915-4927. doi: 10.3934/dcds.2018214

[15]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[16]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[17]

Abbas Bahri. Recent results in contact form geometry. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

[18]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[19]

Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386

[20]

Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]