• Previous Article
    Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay
  • DCDS Home
  • This Issue
  • Next Article
    Uniform attractor of the non-autonomous discrete Selkov model
January  2014, 34(1): 203-227. doi: 10.3934/dcds.2014.34.203

Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

2. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

3. 

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Received  August 2012 Published  June 2013

This paper treats the existence of pullback attractors for the non-autonomous 2D Navier--Stokes equations in two different spaces, namely $L^2$ and $H^1$. The non-autonomous forcing term is taken in $L^2_{\rm loc}(\mathbb R;H^{-1})$ and $L^2_{\rm loc}(\mathbb R;L^2)$ respectively for these two results: even in the autonomous case it is not straightforward to show the required asymptotic compactness of the flow with this regularity of the forcing term. Here we prove the asymptotic compactness of the corresponding processes by verifying the flattening property -- also known as ``Condition (C)". We also show, using the semigroup method, that a little additional regularity -- $f\in L^p_{\rm loc}(\mathbb R;H^{-1})$ or $f\in L^p_{\rm loc}(\mathbb R;L^2)$ for some $p>2$ -- is enough to ensure the existence of a compact pullback absorbing family (not only asymptotic compactness). Even in the autonomous case the existence of a compact absorbing set for this model is new when $f$ has such limited regularity.
Citation: Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203
References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations,, Trans. Amer. Math. Soc., 352 (2000), 285. doi: 10.1090/S0002-9947-99-02528-3.

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484. doi: 10.1016/j.na.2005.03.111.

[3]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263. doi: 10.1016/j.crma.2005.12.015.

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, "Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,", Applied Mathematical Sciences, 182 (2012). doi: 10.1007/978-1-4614-4581-4.

[5]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308.

[6]

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285. doi: 10.1016/0022-0396(88)90007-1.

[7]

S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds,, J. Math. Anal. Appl., 169 (1992), 283. doi: 10.1016/0022-247X(92)90115-T.

[8]

C. Foias, O. P. Manley, R. Temam and Y. M. Trève, Asymptotic analysis of the Navier-Stokes equations,, Phys. D, 9 (1983), 157. doi: 10.1016/0167-2789(83)90297-X.

[9]

C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows,, RAIRO Modél. Math. Anal. Numér., 22 (1988), 93.

[10]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, J. Differential Equations, 73 (1988), 309. doi: 10.1016/0022-0396(88)90110-6.

[11]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269. doi: 10.1007/BF00276188.

[12]

J. García-Luengo, P. Marín-Rubio and J. Real, $H^2$-boundedness of the pullback attractors for non-autonomous 2D Navier-Stokes equations in bounded domains,, Nonlinear Anal., 74 (2011), 4882. doi: 10.1016/j.na.2011.04.063.

[13]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour,, J. Differential Equations, 252 (2012), 4333. doi: 10.1016/j.jde.2012.01.010.

[14]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, Adv. Nonlinear Stud., 13 (2013), 331.

[15]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).

[16]

D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 875. doi: 10.1512/iumj.1993.42.42039.

[17]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163. doi: 10.1098/rspa.2006.1753.

[18]

P. E. Kloeden, J. A. Langa, and J. Real, Pullback $V$-attractors of the 3-dimensional globally modified Navier-Stokes equations,, Commun. Pure Appl. Anal., 6 (2007), 937. doi: 10.3934/cpaa.2007.6.937.

[19]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[20]

Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications,, Indiana Univ. Math. J., 51 (2002), 1541. doi: 10.1512/iumj.2002.51.2255.

[21]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065.

[22]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989. doi: 10.3934/dcds.2010.26.989.

[23]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge Texts in Applied Mathematics, (2001). doi: 10.1007/978-94-010-0732-0.

[24]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7.

[25]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", $2^{nd}$ edition, (1979).

[26]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1988). doi: 10.1007/978-1-4684-0313-8.

show all references

References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations,, Trans. Amer. Math. Soc., 352 (2000), 285. doi: 10.1090/S0002-9947-99-02528-3.

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484. doi: 10.1016/j.na.2005.03.111.

[3]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263. doi: 10.1016/j.crma.2005.12.015.

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, "Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,", Applied Mathematical Sciences, 182 (2012). doi: 10.1007/978-1-4614-4581-4.

[5]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308.

[6]

S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces,, J. Differential Equations, 74 (1988), 285. doi: 10.1016/0022-0396(88)90007-1.

[7]

S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds,, J. Math. Anal. Appl., 169 (1992), 283. doi: 10.1016/0022-247X(92)90115-T.

[8]

C. Foias, O. P. Manley, R. Temam and Y. M. Trève, Asymptotic analysis of the Navier-Stokes equations,, Phys. D, 9 (1983), 157. doi: 10.1016/0167-2789(83)90297-X.

[9]

C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows,, RAIRO Modél. Math. Anal. Numér., 22 (1988), 93.

[10]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, J. Differential Equations, 73 (1988), 309. doi: 10.1016/0022-0396(88)90110-6.

[11]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269. doi: 10.1007/BF00276188.

[12]

J. García-Luengo, P. Marín-Rubio and J. Real, $H^2$-boundedness of the pullback attractors for non-autonomous 2D Navier-Stokes equations in bounded domains,, Nonlinear Anal., 74 (2011), 4882. doi: 10.1016/j.na.2011.04.063.

[13]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour,, J. Differential Equations, 252 (2012), 4333. doi: 10.1016/j.jde.2012.01.010.

[14]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, Adv. Nonlinear Stud., 13 (2013), 331.

[15]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).

[16]

D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 875. doi: 10.1512/iumj.1993.42.42039.

[17]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163. doi: 10.1098/rspa.2006.1753.

[18]

P. E. Kloeden, J. A. Langa, and J. Real, Pullback $V$-attractors of the 3-dimensional globally modified Navier-Stokes equations,, Commun. Pure Appl. Anal., 6 (2007), 937. doi: 10.3934/cpaa.2007.6.937.

[19]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[20]

Q. Ma, S. Wang, and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications,, Indiana Univ. Math. J., 51 (2002), 1541. doi: 10.1512/iumj.2002.51.2255.

[21]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065.

[22]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989. doi: 10.3934/dcds.2010.26.989.

[23]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge Texts in Applied Mathematics, (2001). doi: 10.1007/978-94-010-0732-0.

[24]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71. doi: 10.1016/S0362-546X(97)00453-7.

[25]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", $2^{nd}$ edition, (1979).

[26]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1988). doi: 10.1007/978-1-4684-0313-8.

[1]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[2]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[3]

Pedro Marín-Rubio, José Real. Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 989-1006. doi: 10.3934/dcds.2010.26.989

[4]

Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643

[5]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[6]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[7]

C. Foias, M. S Jolly, O. P. Manley. Recurrence in the 2-$D$ Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 253-268. doi: 10.3934/dcds.2004.10.253

[8]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[9]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[10]

Luca Bisconti, Davide Catania. Remarks on global attractors for the 3D Navier--Stokes equations with horizontal filtering. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 59-75. doi: 10.3934/dcdsb.2015.20.59

[11]

P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937

[12]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[13]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[14]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[15]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[16]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

[17]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1297-1324. doi: 10.3934/dcdsb.2018152

[18]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[19]

Pierre Fabrie, C. Galusinski. Exponential attractors for the slightly compressible 2D-Navier-Stokes. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 315-348. doi: 10.3934/dcds.1996.2.315

[20]

D. Wirosoetisno. Navier--Stokes equations on a rapidly rotating sphere. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1251-1259. doi: 10.3934/dcdsb.2015.20.1251

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

[Back to Top]