\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Stokes problem in exterior domains: The maximum modulus theorem

Abstract / Introduction Related Papers Cited by
  • We study the Stokes initial boundary value problem, in $(0,T) \times Ω$, where $Ω \subseteq \mathbb{R}^n$, $n\geq3$, is an exterior domain, assuming that the initial data belongs to $L^\infty(Ω)$ and has null divergence in weak sense. We prove the maximum modulus theorem for the corresponding solutions. Crucial for the proof of this result is the analogous one proved by Abe-Giga for bounded domains. Our proof is developed by duality arguments and employing the semigroup properties of the resolving operator defined on $L^1(Ω)$. Our results are similar to the ones proved by Solonnikov by means of the potential theory.
    Mathematics Subject Classification: Primary: 35Q35, Secondary: 35Q30, 76D07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Abe and Y. Giga, Analyticity of the stokes semigroup in spaces of bounded functions, Acta Math., to appear.

    [2]

    K. Abe and Y. Giga, The $L^{\infty}$-Stokes semigroup in exterior domains, submitted for the publication.

    [3]

    F. Crispo and P. Maremonti, An interpolation inequality in exterior domains, Rend. Semin. Mat. Univ. Padova, 112 (2004), 11-39.

    [4]

    W. Desch, M. Hieber and J. Prüss, $L^p$-Theory of the Stokes equation in a half space, J. Evol. Equation, 1 (2001), 115-142.doi: 10.1007/PL00001362.

    [5]

    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-state problems. Second edition. Springer Monographs in Mathematics. Springer, New York, 2011.

    [6]

    G. P. Galdi, P. Maremonti and Y. Zhou, On the Navier-Stokes problem in exterior domains with non decaying initial data, J. Math. Fluid Mech., 14 (2012), 633-–652.doi: 10.1007/s00021-011-0083-9.

    [7]

    G. P. Galdi and S. Rionero, Weighted Energy Methods in Fluid Dynamics and Elasticity, Lecture Notes in Math., 1134, Springer-Verlag, Berlin, 1985.

    [8]

    Y. Giga, K. Inui and Sh. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Quad. Mat., 4 (1999), 27-68.

    [9]

    Y. Giga, Sh. Matsui and O. Sawada, Global existenceof of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fluid Mech., 3 (2001), 302-315.doi: 10.1007/PL00000973.

    [10]

    Y. Giga and H. Sohr, On the Stokes operator in exterior domain, J. Fac. Sci. Univ. Tokyo, 36 (1989), 103-130.

    [11]

    Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.doi: 10.1016/0022-1236(91)90136-S.

    [12]

    Y. Giga and H. Sohr, $L^p$ estimates for the Stokes system, Func. Analysis and Related Topics, 102 (1991), 55-67.

    [13]

    H. Iwashita, $L^q-L^r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in $L^q$ spaces, Math. Ann., 285 (1989), 265-288.doi: 10.1007/BF01443518.

    [14]

    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, Science Publishers, New York-London-Paris 1969 xviii+224 pp.

    [15]

    P. Maremonti, On the Stokes equations: The maximum modulus theorem, Math. Models Methods Appl. Sci., 10 (2000), 1047-1072.doi: 10.1142/S0218202500000537.

    [16]

    P. Maremonti, Stokes and Navier-Stokes problem in the half-space: Existence and uniqueness of solutions a priori non convergent to a limit at infinity, Zapiski Nauch. Sem. POMI, 362 (2008), 176-240; (trasl.) J. of Math., Science, 159 (2009), 486-523.doi: 10.1007/s10958-009-9458-3.

    [17]

    P. Maremonti, A remark on the Stokes problem with initial data in $L^1$, J. of Math. Fluid Mech., 13 (2011), 469-480.doi: 10.1007/s00021-010-0036-8.

    [18]

    P. Maremonti, Pointwise asymptotic stability of steady fluid maotion, J. Math. Fluid Mech., 11 (2009), 348-382, Addendum to: Pointwise Asymptotic Stability of Steady Fluid Motions, J. Math. Fluid Mech., 14 (2012) 197-200.

    [19]

    P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 24 (1997), 395-449.

    [20]

    P. Maremonti and V. A. Solonnikov, Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces with mixed norm, Zap. Nauchn. Semin. POMI, 222 (1995), 124-150; (trasl.) J. Math. Sci., New York, 87 (1997), 3859-3877.doi: 10.1007/BF02355828.

    [21]

    T. Miyakawa, On non-stationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.

    [22]

    O. Sawada and Y. Taniuki, A remark on $L^\infty$ solutions to the 2-D Navier-Stokes equations, J. Math. Fluid Mech., 9 (2007), 533-542.doi: 10.1007/s00021-005-0212-4.

    [23]

    V. A. Solonnikov, Estimates for the solutions of a nonstationary linearized system of Navier-Stokes equations, Trudy Mat. Inst. Steklov, 70 (1964), 213-317.

    [24]

    V. A. Solonnikov, On the differential properties of the solutions of the first boundary-value problem for a nonstationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov, 73 (1964), 221-291.

    [25]

    V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8 (1977), 467-529.doi: 10.1007/BF01084616.

    [26]

    V. A. Solonnikov, On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreasing at infinity, Function theory and applications. J. Math. Sci., 114 (2003), 1726-1740.doi: 10.1023/A:1022317029111.

    [27]

    V. A. Solonnikov, On the estimates of the solution of the evolution Stokes problem in weighted Hölder norms, Annali dell'Univ. di Ferrara, (Sez. VII, Sci. Mat.), 52 (2006), 137-172.doi: 10.1007/s11565-006-0012-7.

    [28]

    R. Temam, Navier-Stokes Equations, Theory and numerical analysis. With an appendix by F. Thomasset. Third edition. Studies in Mathematics and its Applications, 2. North-Holland Pub. Co., Amsterdam-New York-Tokyo, 1984.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return