Citation: |
[1] |
F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions, Comm. Partial Differential Equations, 11 (1986), 1459-1487.doi: 10.1080/03605308608820470. |
[2] |
K. Hidano, Small data scattering and blow-up for a wave equation with a cubic convolution, Funkcialaj Ekvacioj, 43 (2000), 559-588. |
[3] |
F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.doi: 10.1007/BF01647974. |
[4] |
P. Karageorgis and K. Tsutaya, On the asymptotic behavior of nonlinear waves in the presence of a short-range potential, Manuscripta Math., 119 (2006), 323-345.doi: 10.1007/s00229-005-0620-z. |
[5] |
P. Karageorgis and K. Tsutaya, On the Asymptotic Behavior of Solutions of the Wave Equation of Hartree Type, in preparation. |
[6] |
P. Karageorgis and K. Tsutaya, Existence and Blow Up for A Hartree-Type Wave Equation, in preparation. |
[7] |
H. Kubo, On Point-Wise Decay Estimates for the Wave Equation and Their Applications, Dispersive nonlinear problems in mathematical physics, 123-148, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. |
[8] |
G. Perla Menzala and W. A. Strauss, On a wave equation with a cubic convolution, J. Diff. Eq., 43 (1982), 93-105.doi: 10.1016/0022-0396(82)90076-6. |
[9] |
K. Mochizuki and T. Motai, On Small Data Scattering for Some Nonlinear Wave Equations, Patterns and waves, 543-560, Stud. Math. Appl., 18, North-Holland, Amsterdam, 1986.doi: 10.1016/S0168-2024(08)70145-0. |
[10] |
K. Mochizuki, On small data scattering with cubic convolution nonlinearity, J. Math. Soc. Japan, 41 (1989), 143-160.doi: 10.2969/jmsj/04110143. |
[11] |
H. Pecher, Scattering for semilinear wave equations with small data in three space dimensions, Math. Z., 198 (1988), 277-289.doi: 10.1007/BF01163296. |
[12] |
W. A. Strauss, Nonlinear invariant wave equations, Lecture Notes in Phys., 73, Springer, Berlin-New York, (1978), 197-249. |
[13] |
W. A. Strauss and K. Tsutaya, Existence and blow up of small amplitude nonlinear waves with a negative potential, Discrete Continuous Dynam. Systems, 3 (1997), 175-188.doi: 10.3934/dcds.1997.3.175. |
[14] |
K. Tsutaya, Global existence and blow up for a wave equation with a potential and a cubic convolution, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, 2, 913-937, Kluwer Acad. Publ., Dordrecht, 2003. |
[15] |
K. Tsutaya, Scattering theory for a wave equation of Hartree type, Differential & Difference Equations And Applications, 1061-1065, Hindawi Publ. Corp., New York, 2006. |
[16] |
K. Tsutaya, Weighted estimates for a convolution appearing in the wave equation of Hartree type, to appear in J. Math. Anal. Appl.. |