| Citation: |
| [1] |
J. Ban, Y. Cao and H. Hu, The dimensions of a non-conformal repeller and an average conformal repeller, Trans. Amer. Math. Soc., 362 (2010), 727-751.doi: 10.1090/S0002-9947-09-04922-8. |
| [2] |
J. Barral and Y. H. Qu, Localized asymptotic behavior for almost additive potentials, Discrete Contin. Dynam. Syst., 32 (2012), 717-751.doi: 10.3934/dcds.2012.32.717. |
| [3] |
L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Th. Dynam. Syst., 16 (1996), 871-927.doi: 10.1017/S0143385700010117. |
| [4] |
L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics, 272, Birkhäuser Verlag, Basel, 2008. |
| [5] |
L. Barreira and P. Doutor, Dimension spectra of almost additive sequences, Nonlinearity, 22 (2009), 2761-2773.doi: 10.1088/0951-7715/22/11/009. |
| [6] |
L. Barreira and P. Doutor, Almost additive multifractal analysis, J. Math. Pures Appl., 92 (2009), 1-17.doi: 10.1016/j.matpur.2009.04.006. |
| [7] |
L. Barreira and K. Gelfert, Multifractal analysis for Lyapunov exponents on nonconformal repellers, Commun. Math. Phys., 267 (2006), 393-418.doi: 10.1007/s00220-006-0084-3. |
| [8] |
L. Barreira and K. Gelfert, Dimension estimates in smooth dynamics: A survey of recent results, Ergod. Th. Dynam. Syst., 31 (2011), 641-671.doi: 10.1017/S014338571000012X. |
| [9] |
R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.doi: 10.1090/S0002-9947-1973-0338317-X. |
| [10] |
R. Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11-25. |
| [11] |
Y. L. Cao, D. J. Feng and W. Huang, The thermodynamic formalism for submultiplicative potentials, Discrete and Continuous Dynamical Systems, 20 (2008), 639-657. |
| [12] |
Y. L. Cao, The Dimension Estimate of Non-Conformal Repeller, preprint. |
| [13] |
J. Chen and Y. Pesin, Dimension of non-conformal repellers: A survey, Nonlinearity, 23 (2010), R93-R114.doi: 10.1088/0951-7715/23/4/R01. |
| [14] |
W. Cheng, Y. Zhao and Y. Cao, Pressures for asymptotically subadditive potentials under a mistake function, Discrete and Continuous Dynamical Systems, 32 (2012), 487-497.doi: 10.3934/dcds.2012.32.487. |
| [15] |
K. Falconer, Fractal Geometry, Mathematical foundations and applications. John Wiley & Sons, Ltd., Chichester, 1990. |
| [16] |
D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. Part I: Positive matrices, Israel Journal of Mathematics, 138 (2003), 353-376.doi: 10.1007/BF02783432. |
| [17] |
D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices, Israel Journal of Mathematics, 170 (2009), 355-394.doi: 10.1007/s11856-009-0033-x. |
| [18] |
D. Feng and W. Huang, Lyapunov spectrum of asymptoticaliy sub-additive potentials, Comm. Math. Phys., 297 (2010), 1-43.doi: 10.1007/s00220-010-1031-x. |
| [19] |
D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps, Ergod. Th. Dynam. Syst., 17 (1997), 147-167.doi: 10.1017/S0143385797060987. |
| [20] |
K. Gelfert, Dimension estimates beyond conformal and hyperbolic dynamics, Dyn. Syst., 20 (2005), 267-280.doi: 10.1080/14689360500133142. |
| [21] |
G. Iommi, Multifractal analysis of the Lyapunov exponent for the backward continued fraction map, Ergod. Th. Dynam. Syst., 30 (2010), 211-232.doi: 10.1017/S0143385708001090. |
| [22] |
A. Käenmäki and M. Vilppolainen, Separation conditions on controlled Moran constructions, Fund. Math., 200 (2008), 69-100.doi: 10.4064/fm200-1-2. |
| [23] |
N. Luzia, A variational principle for dimension of a class of non-conformal repellers, Ergod. Th. Dynam. Syst., 26 (2006), 821-845.doi: 10.1017/S0143385705000659. |
| [24] |
P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc., 42 (1946), 15-23.doi: 10.1017/S0305004100022684. |
| [25] |
Ya. Pesin and H. Weiss, On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture, Comm. Math. Phys., 182 (1996), 105-153.doi: 10.1007/BF02506387. |
| [26] |
Y. Pesin, Dimension Theory in Dynamical Systems, Contemporary Views and Applications, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1997. |
| [27] |
M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Comm. Math. Phys., 207 (1999), 145-171.doi: 10.1007/s002200050722. |
| [28] |
D. Ruelle, Repellers for real analytic maps, Ergod. Th. Dyn. Syst., 2 (1982), 99-107.doi: 10.1017/S0143385700009603. |
| [29] |
H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency, Annals of Mathematics, 168 (2008), 695-748.doi: 10.4007/annals.2008.168.695. |
| [30] |
R. Shafikov and C. Wolf, Stable sets, hyperbolicity and dimension, Discrete Contin. Dyn. Syst., 12 (2005), 403-412. |
| [31] |
P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
| [32] |
Y. Zhang, Dynamical upper bounds for Hausdorff dimension of invariant sets, Ergod. Th. Dynam. Syst., 17 (1997), 739-756.doi: 10.1017/S0143385797085003. |