# American Institute of Mathematical Sciences

• Previous Article
The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds
• DCDS Home
• This Issue
• Next Article
Some symmetry results for entire solutions of an elliptic system arising in phase separation
June  2014, 34(6): 2513-2533. doi: 10.3934/dcds.2014.34.2513

## On the Hénon-Lane-Emden conjecture

 1 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1, Canada 2 Department of Mathematics, The University of British Columbia, Vancouver BC Canada V6T 1Z2

Received  September 2012 Revised  May 2013 Published  December 2013

We consider Liouville-type theorems for the following Hénon-Lane-Emden system \begin{eqnarray*} \left\{ \begin{array}{lcl} -\Delta u&=& |x|^{a}v^p \ \ in\ \ \mathbb{R}^n,\\ -\Delta v&=& |x|^{b}u^q \ \ in\ \ \mathbb{R}^n, \end{array}\right. \end{eqnarray*} when $p,q \ge 1,$ $pq\neq1$, $a,b\ge0$. The main conjecture states that there is no non-trivial non-negative solution whenever $(p,q)$ is under the critical Sobolev hyperbola, i.e. $\frac{n+a}{p+1}+\frac{n+b}{q+1}>{n-2}$. We show that this is indeed the case in dimension $n=3$ provided the solution is also assumed to be bounded, extending a result established recently by Phan-Souplet in the scalar case.
Assuming stability of the solutions, we could then prove Liouville-type theorems in higher dimensions. For the scalar cases, albeit of second order ($a=b$ and $p=q$) or of fourth order ($a\ge 0=b$ and $p>1=q$), we show that for all dimensions $n\ge 3$ in the first case (resp., $n\ge 5$ in the second case), there is no positive solution with a finite Morse index, whenever $p$ is below the corresponding critical exponent, i.e $1< p < \frac{n+2+2a}{n-2}$ (resp., $1< p < \frac{n+4+2a}{n-4}$). Finally, we show that non-negative stable solutions of the full Hénon-Lane-Emden system are trivial provided \begin{equation*}\label{sysdim00} n < 2 + 2 (\frac{p(b+2)+a+2}{pq-1}) (\sqrt{\frac{pq(q+1)}{p+1}} + \sqrt{ \frac{pq(q+1)}{p+1} - \sqrt{\frac{pq(q+1)}{p+1}}}). \end{equation*}
Citation: Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513
##### References:
 [1] S. N. Amstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Partial Differential Equations, 36 (2011), 2011.  doi: 10.1080/03605302.2010.534523.  Google Scholar [2] M. F. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems,, Adv. Differential Equations, 15 (2010), 1033.   Google Scholar [3] L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar [4] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar [5] C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems,, Nonlinearity, 26 (2013), 2357.  doi: 10.1088/0951-7715/26/8/2357.  Google Scholar [6] C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights,, Proc. Amer. Math. Soc., 140 (2012), 2003.  doi: 10.1090/S0002-9939-2011-11351-0.  Google Scholar [7] E. N. Dancer, Y. Du and Z. M. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent,, J. Diff. Equ., 250 (2011), 3281.  doi: 10.1016/j.jde.2011.02.005.  Google Scholar [8] J. Davila, L. Dupaigne, K. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem,, preprint, (2013).   Google Scholar [9] Y. Du and Z. Guo, Finite Morse index solutions and asymptotics of weighted nonlinear elliptic equations,, Adv. Differential Equations, 18 (2013), 737.   Google Scholar [10] P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity,, Comm. Pure Appl. Math., 60 (2007), 1731.  doi: 10.1002/cpa.20189.  Google Scholar [11] P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS,, Courant Lecture Notes in Mathematics, (2010).   Google Scholar [12] A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbbR^N$,, J. Math. Pures Appl. (9), 87 (2007), 537.  doi: 10.1016/j.matpur.2007.03.001.  Google Scholar [13] M. Fazly, Liouville type theorems for stable solutions of certain elliptic systems,, Advanced Nonlinear Studies, 12 (2012), 1.   Google Scholar [14] M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, Calc. Var. Partial Differential Equations, 47 (2013), 809.  doi: 10.1007/s00526-012-0536-x.  Google Scholar [15] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^N$,, in Mathematical Analysis and Applications, (1981), 369.   Google Scholar [16] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Commun. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar [17] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar [18] W. Jeong and Y. Lee, Stable solutions and finite Morse index solutions of nonlinear elliptic equations with Hardy potential,, Nonlinear Analysis, 87 (2013), 126.  doi: 10.1016/j.na.2013.04.007.  Google Scholar [19] C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^N$,, Comment. Math. Helv., 73 (1998), 206.  doi: 10.1007/s000140050052.  Google Scholar [20] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbbR^N$,, Differential Integral Equations, 9 (1996), 465.   Google Scholar [21] E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125.  doi: 10.1080/03605309308820923.  Google Scholar [22] E. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities,, Tr. Mat. Inst. Steklova, 234 (2001), 1.   Google Scholar [23] Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon elliptic systems,, Adv. Diff. Equ., 17 (2012), 605.   Google Scholar [24] Q. H. Phan and Ph. Souplet, Liouville-type theorems and bounds of solutions of Hardy-Hénon equations,, J. Diff. Equ., 252 (2012), 2544.  doi: 10.1016/j.jde.2011.09.022.  Google Scholar [25] P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems,, Duke Math. J., 139 (2007), 555.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar [26] P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar [27] P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar [28] J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, Differential Integral Equations, 9 (1996), 635.   Google Scholar [29] J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system,, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 369.   Google Scholar [30] Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Adv. Math., 221 (2009), 1409.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar [31] M. A. S. Souto, A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems,, Differential Integral Equations, 8 (1995), 1245.   Google Scholar [32] C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations,, J. Func. Anal., 262 (2012), 1705.  doi: 10.1016/j.jfa.2011.11.017.  Google Scholar [33] J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem,, Mathematische Annalen, 356 (2013), 1599.  doi: 10.1007/s00208-012-0894-x.  Google Scholar

show all references

##### References:
 [1] S. N. Amstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle,, Comm. Partial Differential Equations, 36 (2011), 2011.  doi: 10.1080/03605302.2010.534523.  Google Scholar [2] M. F. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems,, Adv. Differential Equations, 15 (2010), 1033.   Google Scholar [3] L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar [4] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar [5] C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems,, Nonlinearity, 26 (2013), 2357.  doi: 10.1088/0951-7715/26/8/2357.  Google Scholar [6] C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights,, Proc. Amer. Math. Soc., 140 (2012), 2003.  doi: 10.1090/S0002-9939-2011-11351-0.  Google Scholar [7] E. N. Dancer, Y. Du and Z. M. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent,, J. Diff. Equ., 250 (2011), 3281.  doi: 10.1016/j.jde.2011.02.005.  Google Scholar [8] J. Davila, L. Dupaigne, K. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem,, preprint, (2013).   Google Scholar [9] Y. Du and Z. Guo, Finite Morse index solutions and asymptotics of weighted nonlinear elliptic equations,, Adv. Differential Equations, 18 (2013), 737.   Google Scholar [10] P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity,, Comm. Pure Appl. Math., 60 (2007), 1731.  doi: 10.1002/cpa.20189.  Google Scholar [11] P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS,, Courant Lecture Notes in Mathematics, (2010).   Google Scholar [12] A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbbR^N$,, J. Math. Pures Appl. (9), 87 (2007), 537.  doi: 10.1016/j.matpur.2007.03.001.  Google Scholar [13] M. Fazly, Liouville type theorems for stable solutions of certain elliptic systems,, Advanced Nonlinear Studies, 12 (2012), 1.   Google Scholar [14] M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, Calc. Var. Partial Differential Equations, 47 (2013), 809.  doi: 10.1007/s00526-012-0536-x.  Google Scholar [15] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^N$,, in Mathematical Analysis and Applications, (1981), 369.   Google Scholar [16] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Commun. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar [17] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar [18] W. Jeong and Y. Lee, Stable solutions and finite Morse index solutions of nonlinear elliptic equations with Hardy potential,, Nonlinear Analysis, 87 (2013), 126.  doi: 10.1016/j.na.2013.04.007.  Google Scholar [19] C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^N$,, Comment. Math. Helv., 73 (1998), 206.  doi: 10.1007/s000140050052.  Google Scholar [20] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbbR^N$,, Differential Integral Equations, 9 (1996), 465.   Google Scholar [21] E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125.  doi: 10.1080/03605309308820923.  Google Scholar [22] E. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities,, Tr. Mat. Inst. Steklova, 234 (2001), 1.   Google Scholar [23] Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon elliptic systems,, Adv. Diff. Equ., 17 (2012), 605.   Google Scholar [24] Q. H. Phan and Ph. Souplet, Liouville-type theorems and bounds of solutions of Hardy-Hénon equations,, J. Diff. Equ., 252 (2012), 2544.  doi: 10.1016/j.jde.2011.09.022.  Google Scholar [25] P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems,, Duke Math. J., 139 (2007), 555.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar [26] P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar [27] P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar [28] J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems,, Differential Integral Equations, 9 (1996), 635.   Google Scholar [29] J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system,, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 369.   Google Scholar [30] Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Adv. Math., 221 (2009), 1409.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar [31] M. A. S. Souto, A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems,, Differential Integral Equations, 8 (1995), 1245.   Google Scholar [32] C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations,, J. Func. Anal., 262 (2012), 1705.  doi: 10.1016/j.jfa.2011.11.017.  Google Scholar [33] J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem,, Mathematische Annalen, 356 (2013), 1599.  doi: 10.1007/s00208-012-0894-x.  Google Scholar
 [1] Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 [2] Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011 [3] Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003 [4] Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025 [5] Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809 [6] Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167 [7] Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058 [8] Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793 [9] Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510 [10] Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293 [11] Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915 [12] Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869 [13] Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094 [14] M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004 [15] Junichi Harada, Mitsuharu Ôtani. $H^2$-solutions for some elliptic equations with nonlinear boundary conditions. Conference Publications, 2009, 2009 (Special) : 333-339. doi: 10.3934/proc.2009.2009.333 [16] Eudes. M. Barboza, Olimpio H. Miyagaki, Fábio R. Pereira, Cláudia R. Santana. Radial solutions for a class of Hénon type systems with partial interference with the spectrum. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3159-3187. doi: 10.3934/cpaa.2020137 [17] Lisa Hollman, P. J. McKenna. A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence. Communications on Pure & Applied Analysis, 2011, 10 (2) : 785-802. doi: 10.3934/cpaa.2011.10.785 [18] Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823 [19] Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107 [20] Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729

2018 Impact Factor: 1.143