\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Hénon-Lane-Emden conjecture

Abstract / Introduction Related Papers Cited by
  • We consider Liouville-type theorems for the following Hénon-Lane-Emden system \begin{eqnarray*} \left\{ \begin{array}{lcl} -\Delta u&=& |x|^{a}v^p \ \ in\ \ \mathbb{R}^n,\\ -\Delta v&=& |x|^{b}u^q \ \ in\ \ \mathbb{R}^n, \end{array}\right. \end{eqnarray*} when $p,q \ge 1,$ $pq\neq1$, $a,b\ge0$. The main conjecture states that there is no non-trivial non-negative solution whenever $(p,q)$ is under the critical Sobolev hyperbola, i.e. $ \frac{n+a}{p+1}+\frac{n+b}{q+1}>{n-2}$. We show that this is indeed the case in dimension $n=3$ provided the solution is also assumed to be bounded, extending a result established recently by Phan-Souplet in the scalar case.
        Assuming stability of the solutions, we could then prove Liouville-type theorems in higher dimensions. For the scalar cases, albeit of second order ($a=b$ and $p=q$) or of fourth order ($a\ge 0=b$ and $p>1=q$), we show that for all dimensions $n\ge 3$ in the first case (resp., $n\ge 5$ in the second case), there is no positive solution with a finite Morse index, whenever $p$ is below the corresponding critical exponent, i.e $ 1< p < \frac{n+2+2a}{n-2}$ (resp., $ 1< p < \frac{n+4+2a}{n-4}$). Finally, we show that non-negative stable solutions of the full Hénon-Lane-Emden system are trivial provided \begin{equation*}\label{sysdim00} n < 2 + 2 (\frac{p(b+2)+a+2}{pq-1}) (\sqrt{\frac{pq(q+1)}{p+1}} + \sqrt{ \frac{pq(q+1)}{p+1} - \sqrt{\frac{pq(q+1)}{p+1}}}). \end{equation*}
    Mathematics Subject Classification: 35J47, 35B33, 35B45, 35B08.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. N. Amstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equations, 36 (2011), 2011-2047.doi: 10.1080/03605302.2010.534523.

    [2]

    M. F. Bidaut-Veron and H. Giacomini, A new dynamical approach of Emden-Fowler equations and systems, Adv. Differential Equations, 15 (2010), 1033-1082.

    [3]

    L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.doi: 10.1002/cpa.3160420304.

    [4]

    W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8.

    [5]

    C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems, Nonlinearity, 26 (2013), 2357-2371.doi: 10.1088/0951-7715/26/8/2357.

    [6]

    C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012.doi: 10.1090/S0002-9939-2011-11351-0.

    [7]

    E. N. Dancer, Y. Du and Z. M. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Diff. Equ., 250 (2011), 3281-3310.doi: 10.1016/j.jde.2011.02.005.

    [8]

    J. Davila, L. Dupaigne, K. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, preprint, 2013.

    [9]

    Y. Du and Z. Guo, Finite Morse index solutions and asymptotics of weighted nonlinear elliptic equations, Adv. Differential Equations, 18 (2013), 737-768.

    [10]

    P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60 (2007), 1731-1768.doi: 10.1002/cpa.20189.

    [11]

    P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.

    [12]

    A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbbR^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.doi: 10.1016/j.matpur.2007.03.001.

    [13]

    M. Fazly, Liouville type theorems for stable solutions of certain elliptic systems, Advanced Nonlinear Studies, 12 (2012), 1-17.

    [14]

    M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems, Calc. Var. Partial Differential Equations, 47 (2013), 809-823.doi: 10.1007/s00526-012-0536-x.

    [15]

    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^N$, in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981, 369-402.

    [16]

    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406.

    [17]

    B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.doi: 10.1080/03605308108820196.

    [18]

    W. Jeong and Y. Lee, Stable solutions and finite Morse index solutions of nonlinear elliptic equations with Hardy potential, Nonlinear Analysis, 87 (2013), 126-145.doi: 10.1016/j.na.2013.04.007.

    [19]

    C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^N$, Comment. Math. Helv., 73 (1998), 206-231.doi: 10.1007/s000140050052.

    [20]

    E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbbR^N$, Differential Integral Equations, 9 (1996), 465-479.

    [21]

    E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.doi: 10.1080/03605309308820923.

    [22]

    E. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, 234 (2001), 1-384.

    [23]

    Q. H. Phan, Liouville-type theorems and bounds of solutions for Hardy-Hénon elliptic systems, Adv. Diff. Equ., 17 (2012), 605-634.

    [24]

    Q. H. Phan and Ph. Souplet, Liouville-type theorems and bounds of solutions of Hardy-Hénon equations, J. Diff. Equ., 252 (2012), 2544-2562.doi: 10.1016/j.jde.2011.09.022.

    [25]

    P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.doi: 10.1215/S0012-7094-07-13935-8.

    [26]

    P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.doi: 10.1512/iumj.1986.35.35036.

    [27]

    P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007.

    [28]

    J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9 (1996), 635-653.

    [29]

    J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 369-380.

    [30]

    Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.doi: 10.1016/j.aim.2009.02.014.

    [31]

    M. A. S. Souto, A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems, Differential Integral Equations, 8 (1995), 1245-1258.

    [32]

    C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Func. Anal., 262 (2012), 1705-1727.doi: 10.1016/j.jfa.2011.11.017.

    [33]

    J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem, Mathematische Annalen, 356 (2013), 1599-1612.doi: 10.1007/s00208-012-0894-x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(165) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return