June  2014, 34(6): 2581-2615. doi: 10.3934/dcds.2014.34.2581

Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations

1. 

Institut für Mathematik, Goethe-Universität, Frankfurt, Robert-Mayer-Straße 10, 60054 Frankfurt, Germany, Germany

Received  February 2013 Published  December 2013

We study the nonlinear fractional reaction-diffusion equation $∂_t u + (-\Delta)^s u = f(t,x,u)$, $s\in(0,1)$ in a bounded domain $\Omega$ together with Dirichlet boundary conditions on $\mathbb{R}^N \setminus \Omega$. We prove asymptotic symmetry of nonnegative globally bounded solutions in the case where the underlying data obeys some symmetry and monotonicity assumptions. More precisely, we assume that $\Omega$ is symmetric with respect to reflection at a hyperplane, say $\{x_1=0\}$, and convex in the $x_1$-direction, and that the nonlinearity $f$ is even in $x_1$ and nonincreasing in $|x_1|$. Under rather weak additional technical assumptions, we then show that any nonzero element in the $\omega$-limit set of nonnegative globally bounded solution is even in $x_1$ and strictly decreasing in $|x_1|$. This result, which is obtained via a series of new estimates for antisymmetric supersolutions of a corresponding family of linear equations, implies a strong maximum type principle which is not available in the non-fractional case $s=1$.
Citation: Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581
References:
[1]

A. D. Alexandrov, A characteristic property of the spheres,, Ann. Mat. Pura Appl. (4), 58 (1962), 303. doi: 10.1007/BF02413056. Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2nd edition, (2009). doi: 10.1017/CBO9780511809781. Google Scholar

[3]

M. Birkner, J. A. López-Mimbela and A. Wakolbinger, Comparison results and steady states for the Fujita equation with fractional Laplacian,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 83. doi: 10.1016/j.anihpc.2004.05.002. Google Scholar

[4]

K. Bogdan, T. Kulczycki and M. Kwaśnicki, Estimates and structure of $\alpha$-harmonic functions,, Probability Theory and Related Fields, 140 (2008), 345. doi: 10.1007/s00440-007-0067-0. Google Scholar

[5]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39. doi: 10.1017/S0308210511000175. Google Scholar

[6]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl. (9), 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[7]

L. Caffarelli, C. H. Chan and A. Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849. doi: 10.1090/S0894-0347-2011-00698-X. Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians. I. Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, (). doi: 10.1016/j.anihpc.2013.02.001. Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[10]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[11]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903. Google Scholar

[12]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local seminlinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353. doi: 10.1080/03605302.2011.562954. Google Scholar

[13]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[14]

S.-Y. A. Chang and M. del Mar González, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016. Google Scholar

[15]

H. Chang Lara and G. Dávila, Regularity for solutions of non local parabolic equations,, Calculus of Variations and Partial Differential Equations, (2012). doi: 10.1007/s00526-012-0576-2. Google Scholar

[16]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[18]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[19]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators,, Communications in Partial Differential Equations, 38 (2013), 1539. doi: 10.1080/03605302.2013.808211. Google Scholar

[20]

B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[21]

N. Jacob, Pseudo Differential Operators and Markov Processes. Vol. I, II, III,, Imperial College Press, (2005). doi: 10.1142/9781860947155. Google Scholar

[22]

T. Jin and J. Xiong, A fractional Yamabe flow and some applications,, Journal für die reine und angewandte Mathematik, (). doi: 10.1515/crelle-2012-0110. Google Scholar

[23]

M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators,, C. R. Math. Acad. Sci. Paris, 349 (2011), 637. doi: 10.1016/j.crma.2011.04.014. Google Scholar

[24]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). Google Scholar

[25]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105. Google Scholar

[26]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations on $\mathbbR^N$. I. Asymptotic symmetry for the Cauchy problem,, Comm. Partial Differential Equations, 30 (2005), 1567. doi: 10.1080/03605300500299919. Google Scholar

[27]

P. Poláčik, Estimates of solutions and asymptotic symmetry for parabolic equations on bounded domains,, Arch. Ration. Mech. Anal., 183 (2007), 59. doi: 10.1007/s00205-006-0004-x. Google Scholar

[28]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations: A survey,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 170. doi: 10.1142/9789812834744_0009. Google Scholar

[29]

P. Poláčik and S. Terracini, Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains,, to appear in Proceedings of the American Mathematical Society., (). Google Scholar

[30]

A. de Pablo, F. Quirós, A. Rodrĺguez and J. L. Vázquez, A fractional porous medium equation,, Adv. Math., 226 (2011), 1378. doi: 10.1016/j.aim.2010.07.017. Google Scholar

[31]

X. Ros-Oton and J. Serra, The Dirichlet Problem for the fractional Laplacian: Regularity up to the boundary,, Journal de Mathématiques Pures et Appliquées, (). doi: 10.1016/j.matpur.2013.06.003. Google Scholar

[32]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. Google Scholar

[33]

M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows,, SIAM J. Math. Anal., 35 (2003), 357. doi: 10.1137/S0036141002409362. Google Scholar

[34]

R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion in a domain,, Probab. Theory and Related Fields, 125 (2003), 578. doi: 10.1007/s00440-002-0251-1. Google Scholar

[35]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 42 (2011), 21. doi: 10.1007/s00526-010-0378-3. Google Scholar

[36]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge University Press, (1922). Google Scholar

show all references

References:
[1]

A. D. Alexandrov, A characteristic property of the spheres,, Ann. Mat. Pura Appl. (4), 58 (1962), 303. doi: 10.1007/BF02413056. Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2nd edition, (2009). doi: 10.1017/CBO9780511809781. Google Scholar

[3]

M. Birkner, J. A. López-Mimbela and A. Wakolbinger, Comparison results and steady states for the Fujita equation with fractional Laplacian,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 83. doi: 10.1016/j.anihpc.2004.05.002. Google Scholar

[4]

K. Bogdan, T. Kulczycki and M. Kwaśnicki, Estimates and structure of $\alpha$-harmonic functions,, Probability Theory and Related Fields, 140 (2008), 345. doi: 10.1007/s00440-007-0067-0. Google Scholar

[5]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39. doi: 10.1017/S0308210511000175. Google Scholar

[6]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl. (9), 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[7]

L. Caffarelli, C. H. Chan and A. Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849. doi: 10.1090/S0894-0347-2011-00698-X. Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians. I. Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, (). doi: 10.1016/j.anihpc.2013.02.001. Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[10]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[11]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903. Google Scholar

[12]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local seminlinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353. doi: 10.1080/03605302.2011.562954. Google Scholar

[13]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[14]

S.-Y. A. Chang and M. del Mar González, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016. Google Scholar

[15]

H. Chang Lara and G. Dávila, Regularity for solutions of non local parabolic equations,, Calculus of Variations and Partial Differential Equations, (2012). doi: 10.1007/s00526-012-0576-2. Google Scholar

[16]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[18]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[19]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators,, Communications in Partial Differential Equations, 38 (2013), 1539. doi: 10.1080/03605302.2013.808211. Google Scholar

[20]

B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[21]

N. Jacob, Pseudo Differential Operators and Markov Processes. Vol. I, II, III,, Imperial College Press, (2005). doi: 10.1142/9781860947155. Google Scholar

[22]

T. Jin and J. Xiong, A fractional Yamabe flow and some applications,, Journal für die reine und angewandte Mathematik, (). doi: 10.1515/crelle-2012-0110. Google Scholar

[23]

M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators,, C. R. Math. Acad. Sci. Paris, 349 (2011), 637. doi: 10.1016/j.crma.2011.04.014. Google Scholar

[24]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). Google Scholar

[25]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105. Google Scholar

[26]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations on $\mathbbR^N$. I. Asymptotic symmetry for the Cauchy problem,, Comm. Partial Differential Equations, 30 (2005), 1567. doi: 10.1080/03605300500299919. Google Scholar

[27]

P. Poláčik, Estimates of solutions and asymptotic symmetry for parabolic equations on bounded domains,, Arch. Ration. Mech. Anal., 183 (2007), 59. doi: 10.1007/s00205-006-0004-x. Google Scholar

[28]

P. Poláčik, Symmetry properties of positive solutions of parabolic equations: A survey,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 170. doi: 10.1142/9789812834744_0009. Google Scholar

[29]

P. Poláčik and S. Terracini, Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains,, to appear in Proceedings of the American Mathematical Society., (). Google Scholar

[30]

A. de Pablo, F. Quirós, A. Rodrĺguez and J. L. Vázquez, A fractional porous medium equation,, Adv. Math., 226 (2011), 1378. doi: 10.1016/j.aim.2010.07.017. Google Scholar

[31]

X. Ros-Oton and J. Serra, The Dirichlet Problem for the fractional Laplacian: Regularity up to the boundary,, Journal de Mathématiques Pures et Appliquées, (). doi: 10.1016/j.matpur.2013.06.003. Google Scholar

[32]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. Google Scholar

[33]

M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows,, SIAM J. Math. Anal., 35 (2003), 357. doi: 10.1137/S0036141002409362. Google Scholar

[34]

R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion in a domain,, Probab. Theory and Related Fields, 125 (2003), 578. doi: 10.1007/s00440-002-0251-1. Google Scholar

[35]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 42 (2011), 21. doi: 10.1007/s00526-010-0378-3. Google Scholar

[36]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge University Press, (1922). Google Scholar

[1]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[2]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[3]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

[4]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[5]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[6]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[7]

Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068

[8]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[9]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[10]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[11]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[12]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[13]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[14]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[15]

Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155

[16]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[17]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[18]

Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026

[19]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[20]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 695-708. doi: 10.3934/dcdss.2020038

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]