August  2014, 34(8): 3095-3107. doi: 10.3934/dcds.2014.34.3095

Particle trajectories in extreme Stokes waves over infinite depth

1. 

School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8

Received  July 2013 Revised  September 2013 Published  January 2014

We investigate the velocity field of fluid particles in an extreme water wave over infinite depth. It is shown that the trajectories of particles within the fluid and along the free surface do not form closed paths over the course of one period, but rather undergo a positive drift in the direction of wave propagation. In addition it is shown that the wave crest cannot form a stagnation point despite the velocity of the fluid particles being zero there.
Citation: Tony Lyons. Particle trajectories in extreme Stokes waves over infinite depth. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3095-3107. doi: 10.3934/dcds.2014.34.3095
References:
[1]

C. J. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form,, Acta Math., 148 (1982), 193. doi: 10.1007/BF02392728.

[2]

C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long wave limit,, Philos. Trans. R. Soc. Lond. A, 303 (1981), 633. doi: 10.1098/rsta.1981.0231.

[3]

B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation. An Introduction,, Princeton University Press, (2003).

[4]

R. B. Burckel, An Introduction to Classical Complex Analysis,, New York-London Acadenic Press, (1979).

[5]

A. Constantin, On deep water wave motion,, J. Phys. A, 34 (2001), 1405. doi: 10.1088/0305-4470/34/7/313.

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, CBMS-NSF Regional Conference in Applied Mathematics 81. 2011, (2011). doi: 10.1137/1.9781611971873.

[8]

A. Constantin, Particle trajectories in extreme Stokes waves,, IMA J. Appl. Math., 77 (2012), 293. doi: 10.1093/imamat/hxs033.

[9]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907. doi: 10.1007/s00205-012-0584-6.

[10]

A. Constantin, M. Ehrnström and G. Villari, Particle trajectories in linear deep-water waves,, Nonl. Anal.-Real World Appl., 9 (2008), 1336. doi: 10.1016/j.nonrwa.2007.03.003.

[11]

A. Constantin and J. Escher, Symmetry of deep-water waves with vorticity,, Eur. J. App. Math., 15 (2004), 755. doi: 10.1017/S0956792504005777.

[12]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7.

[13]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12.

[14]

A. Constantin and W. Strauss, Pressure beneath a Stokes Wave,, Comm. Pure Appl. Math., 63 (2010), 533. doi: 10.1002/cpa.20299.

[15]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation,, Arch. Ration. Mech. Anal., 199 (2011), 33. doi: 10.1007/s00205-010-0314-x.

[16]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fluid Mech., 10 (2008), 1. doi: 10.1007/s00021-005-0214-2.

[17]

M. Ehrnström, On the streamlines and particle paths of gravitational waves,, Nonlinearity, 21 (2008), 1141. doi: 10.1088/0951-7715/21/5/012.

[18]

L. C. Evans, Partial Differential Equations-2nd ed.,, AMS Graduate Studies in Mathematics, (2010).

[19]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems,, Cambridge University Press, (2000). doi: 10.1017/CBO9780511569203.

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Berlin: Springer, (2001).

[21]

D. Henry, The trajectories of particles in deep water Stokes waves,, Int. Math. Res. Not., 2006 (2006), 1. doi: 10.1155/IMRN/2006/23405.

[22]

D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity water waves,, Phil. Trans. R. Soc. A, 365 (2007), 2241. doi: 10.1098/rsta.2007.2005.

[23]

D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves,, J. Nonlin. Math. Phys., 14 (2007), 1. doi: 10.2991/jnmp.2007.14.1.1.

[24]

D. Henry, On the deep-water Stokes wave flow,, Int. Math. Res. Not., 2008 (2008), 1. doi: 10.1093/imrn/rnn071.

[25]

D. Henry, Pressure in a deep-water Stokes wave,, J. Math. Fluid. Mech., 13 (2011), 251. doi: 10.1007/s00021-009-0015-0.

[26]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge University Press, (1997). doi: 10.1017/CBO9780511624056.

[27]

P. I. Plotnikov and J. F. Toland, Convexity of Stokes waves of extreme form,, Arch. Ration. Mech. Anal., 171 (2004), 349. doi: 10.1007/s00205-003-0292-3.

[28]

Ch. Pommerenke, Boundary Behaviour of Conformal Maps,, Berlin: Srpringer, (1992).

[29]

Ch. Pommerenke., Conformal Maps at the Boundary,, in Handbook of Complex Analysis: Geometric Function Theory, (2002). doi: 10.1016/S1874-5709(02)80004-X.

[30]

G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change in form,, in Math. and Phys. Papers, (1880), 225.

[31]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (2006), 1.

[32]

E. Varvaruca, Some geometric and analytic properties of solutions of Bernoulli free-boundary problems,, Interfaces Free Bound., 9 (2007), 367. doi: 10.4171/IFB/169.

[33]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,, New York: Springer, (1989). doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

C. J. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form,, Acta Math., 148 (1982), 193. doi: 10.1007/BF02392728.

[2]

C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long wave limit,, Philos. Trans. R. Soc. Lond. A, 303 (1981), 633. doi: 10.1098/rsta.1981.0231.

[3]

B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation. An Introduction,, Princeton University Press, (2003).

[4]

R. B. Burckel, An Introduction to Classical Complex Analysis,, New York-London Acadenic Press, (1979).

[5]

A. Constantin, On deep water wave motion,, J. Phys. A, 34 (2001), 1405. doi: 10.1088/0305-4470/34/7/313.

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, CBMS-NSF Regional Conference in Applied Mathematics 81. 2011, (2011). doi: 10.1137/1.9781611971873.

[8]

A. Constantin, Particle trajectories in extreme Stokes waves,, IMA J. Appl. Math., 77 (2012), 293. doi: 10.1093/imamat/hxs033.

[9]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907. doi: 10.1007/s00205-012-0584-6.

[10]

A. Constantin, M. Ehrnström and G. Villari, Particle trajectories in linear deep-water waves,, Nonl. Anal.-Real World Appl., 9 (2008), 1336. doi: 10.1016/j.nonrwa.2007.03.003.

[11]

A. Constantin and J. Escher, Symmetry of deep-water waves with vorticity,, Eur. J. App. Math., 15 (2004), 755. doi: 10.1017/S0956792504005777.

[12]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7.

[13]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12.

[14]

A. Constantin and W. Strauss, Pressure beneath a Stokes Wave,, Comm. Pure Appl. Math., 63 (2010), 533. doi: 10.1002/cpa.20299.

[15]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation,, Arch. Ration. Mech. Anal., 199 (2011), 33. doi: 10.1007/s00205-010-0314-x.

[16]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fluid Mech., 10 (2008), 1. doi: 10.1007/s00021-005-0214-2.

[17]

M. Ehrnström, On the streamlines and particle paths of gravitational waves,, Nonlinearity, 21 (2008), 1141. doi: 10.1088/0951-7715/21/5/012.

[18]

L. C. Evans, Partial Differential Equations-2nd ed.,, AMS Graduate Studies in Mathematics, (2010).

[19]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems,, Cambridge University Press, (2000). doi: 10.1017/CBO9780511569203.

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Berlin: Springer, (2001).

[21]

D. Henry, The trajectories of particles in deep water Stokes waves,, Int. Math. Res. Not., 2006 (2006), 1. doi: 10.1155/IMRN/2006/23405.

[22]

D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity water waves,, Phil. Trans. R. Soc. A, 365 (2007), 2241. doi: 10.1098/rsta.2007.2005.

[23]

D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves,, J. Nonlin. Math. Phys., 14 (2007), 1. doi: 10.2991/jnmp.2007.14.1.1.

[24]

D. Henry, On the deep-water Stokes wave flow,, Int. Math. Res. Not., 2008 (2008), 1. doi: 10.1093/imrn/rnn071.

[25]

D. Henry, Pressure in a deep-water Stokes wave,, J. Math. Fluid. Mech., 13 (2011), 251. doi: 10.1007/s00021-009-0015-0.

[26]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge University Press, (1997). doi: 10.1017/CBO9780511624056.

[27]

P. I. Plotnikov and J. F. Toland, Convexity of Stokes waves of extreme form,, Arch. Ration. Mech. Anal., 171 (2004), 349. doi: 10.1007/s00205-003-0292-3.

[28]

Ch. Pommerenke, Boundary Behaviour of Conformal Maps,, Berlin: Srpringer, (1992).

[29]

Ch. Pommerenke., Conformal Maps at the Boundary,, in Handbook of Complex Analysis: Geometric Function Theory, (2002). doi: 10.1016/S1874-5709(02)80004-X.

[30]

G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change in form,, in Math. and Phys. Papers, (1880), 225.

[31]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (2006), 1.

[32]

E. Varvaruca, Some geometric and analytic properties of solutions of Bernoulli free-boundary problems,, Interfaces Free Bound., 9 (2007), 367. doi: 10.4171/IFB/169.

[33]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,, New York: Springer, (1989). doi: 10.1007/978-1-4612-1015-3.

[1]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[2]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[3]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[4]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[5]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[6]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[7]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[8]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[9]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[10]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[11]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[12]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[13]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[14]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[15]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066

[16]

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov, Andrey Yu. Goritsky. Homogenization of trajectory attractors of 3D Navier-Stokes system with randomly oscillating force. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2375-2393. doi: 10.3934/dcds.2017103

[17]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[18]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[19]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[20]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]