August  2014, 34(8): 3135-3153. doi: 10.3934/dcds.2014.34.3135

A boundary integral formulation for particle trajectories in Stokes waves

1. 

Instituto Nacional de Matemática Pura e Aplicada/IMPA, Est. D. Castorina, 110, J. Botânico, Rio de Janeiro, RJ 22460-320, Brazil

Received  July 2013 Revised  September 2013 Published  January 2014

Recently important theorems have been established presenting qualitative results for particle trajectories below a Stokes wave. A diversity of orbit patterns were described, including the case of a closed orbit when a Stokes wave propagates in the presence of an adverse current. In this work these results are revisited in a quantitative fashion through a boundary integral formulation which leads to very accurate numerical simulations of particle trajectories. The boundary integral formulation allows the accurate evaluation of the vector field of the (particle's) dynamical system, without resorting to a series expansion and a small parameter. Accurate trajectories are benchmarked against well known expansions for weakly nonlinear waves. Simulations are then performed beyond this regime. Closed orbits are found in the presence of an adverse current, as well as non-smooth trajectories that have not been reported. These occur for both adverse and favorable currents.
Citation: André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135
References:
[1]

D. P. Bertsekas, Nonlinear Programming,, $2^{nd}$ edition, (1999).  doi: 10.1038/sj.jors.2600425.  Google Scholar

[2]

H.-K. Chang, Y.-Y. Chen and J.-C. Liou, Particle trajectories of nonlinear gravity waves in deep water,, Ocean Engineering, 36 (2009), 324.  doi: 10.1016/j.oceaneng.2008.12.007.  Google Scholar

[3]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[4]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, SIAM, (2011).  doi: 10.1137/1.9781611971873.  Google Scholar

[5]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907.  doi: 10.1007/s00205-012-0584-6.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin, M. Ehrnström and E. Wahlén, Particle trajectories in linear deep-water waves,, Nonlinear Anal. Real World Appl., 9 (2008), 1.  doi: 10.1016/j.nonrwa.2007.03.003.  Google Scholar

[8]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[9]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fulid Mech., 10 (2008), 1336.  doi: 10.1007/s00021-005-0214-2.  Google Scholar

[10]

M. W. Dingemans, Water Waves Propagation Over Uneven Bottoms,, World Scientific, (1997).  doi: 10.1142/1241-part1.  Google Scholar

[11]

J. D. Fenton, A fifth-order Stokes theory for steady waves,, Journal of Waterway, 111 (1985), 216.  doi: 10.1061/(ASCE)0733-950X(1985)111:2(216).  Google Scholar

[12]

J. D. Fenton, Nonlinear wave theories,, The Sea: Ocean Engineering Science, 9 (1990), 1.   Google Scholar

[13]

P. Guidotti, A new first-kind boundary integral formulation for the Dirichlet-to-Neumman map in 2D,, J. Comput. Phy., 190 (2008), 325.  doi: 10.1016/S0021-9991(03)00277-8.  Google Scholar

[14]

D. Henry, On the deep-water Stokes wave flow,, IMRN, 2008 (2008), 1.  doi: 10.1093/imrn/rnn071.  Google Scholar

[15]

M. Isobe, H. Nishimura and K. Horikawa, Expressions of Pertubation Solutions for Conservative Waves by Using Wave Height,, Proceedings of 33rd annual conference of JSCE 1978, (1978), 760.   Google Scholar

[16]

F. John, Partial Differential Equations,, $4^{th}$ edition, (1982).   Google Scholar

[17]

I. G. Jonsson and L. Arneborg, Energy properties and shoaling of higher-order stokes waves on current,, Ocean Engineering, 22 (1995), 819.  doi: 10.1016/0029-8018(95)00008-9.  Google Scholar

[18]

H. Lamb, Hydrodynamics,, Cambridge, (1895).   Google Scholar

[19]

M. S. Longuet-Higgins, Eulerian and Lagrangian aspects of surface waves,, J. Fluid Mech., 173 (1986), 683.  doi: 10.1017/S0022112086001325.  Google Scholar

[20]

, Available at:, , ().   Google Scholar

[21]

H. Okamoto and M. Shōji, The Mathematical Theory of Permanent Progressive Water-Waves,, World Scientific, (2001).   Google Scholar

[22]

H. Okamoto and M. Shōji, Trajectories of fluid particles in a periodic water wave,, Phil. Trans. R. Soc. A, 370 (2012), 1661.  doi: 10.1098/rsta.2011.0447.  Google Scholar

[23]

F. Ruellan and A. Wallet, Trajectoires internes das un clapotis partiel,, La Houille Blanche, 5 (1950), 483.   Google Scholar

[24]

L. Skjelbreia and J. Hendrinck, Fifth Order Gravity Wave Theory,, JProceedings of 7th conference on coastal engineering, (1960), 184.   Google Scholar

[25]

J. J. Stoker, Water Waves. The Mathematical Theory with Applications,, Intersciene Publ. Inc., (1957).   Google Scholar

[26]

G. G. Stokes, On the theory of oscillatory waves,, Trans. Cambridge Phil. Soc., 8 (1847), 441.  doi: 10.1017/CBO9780511702242.013.  Google Scholar

[27]

L. N. Trefethen, Spectral Methods in MATLAB,, SIAM, (2001).  doi: 10.1137/1.9780898719598.  Google Scholar

[28]

M. Umeyama, Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry,, Phil. Trans. R. Soc. A, 370 (2012), 1687.  doi: 10.1098/rsta.2011.0450.  Google Scholar

[29]

F. Ursell, Mass transport in gravity waves,, Proc. Cambridge Phil. Soc., 40 (1953), 145.  doi: 10.1017/S0305004100028140.  Google Scholar

[30]

G. B. Whitham, Linear and Nonlinear Waves,, John Wiley, (1974).   Google Scholar

show all references

References:
[1]

D. P. Bertsekas, Nonlinear Programming,, $2^{nd}$ edition, (1999).  doi: 10.1038/sj.jors.2600425.  Google Scholar

[2]

H.-K. Chang, Y.-Y. Chen and J.-C. Liou, Particle trajectories of nonlinear gravity waves in deep water,, Ocean Engineering, 36 (2009), 324.  doi: 10.1016/j.oceaneng.2008.12.007.  Google Scholar

[3]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[4]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, SIAM, (2011).  doi: 10.1137/1.9781611971873.  Google Scholar

[5]

A. Constantin, Mean velocities in a Stokes wave,, Arch. Ration. Mech. Anal., 207 (2013), 907.  doi: 10.1007/s00205-012-0584-6.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591.  doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin, M. Ehrnström and E. Wahlén, Particle trajectories in linear deep-water waves,, Nonlinear Anal. Real World Appl., 9 (2008), 1.  doi: 10.1016/j.nonrwa.2007.03.003.  Google Scholar

[8]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533.  doi: 10.1002/cpa.20299.  Google Scholar

[9]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fulid Mech., 10 (2008), 1336.  doi: 10.1007/s00021-005-0214-2.  Google Scholar

[10]

M. W. Dingemans, Water Waves Propagation Over Uneven Bottoms,, World Scientific, (1997).  doi: 10.1142/1241-part1.  Google Scholar

[11]

J. D. Fenton, A fifth-order Stokes theory for steady waves,, Journal of Waterway, 111 (1985), 216.  doi: 10.1061/(ASCE)0733-950X(1985)111:2(216).  Google Scholar

[12]

J. D. Fenton, Nonlinear wave theories,, The Sea: Ocean Engineering Science, 9 (1990), 1.   Google Scholar

[13]

P. Guidotti, A new first-kind boundary integral formulation for the Dirichlet-to-Neumman map in 2D,, J. Comput. Phy., 190 (2008), 325.  doi: 10.1016/S0021-9991(03)00277-8.  Google Scholar

[14]

D. Henry, On the deep-water Stokes wave flow,, IMRN, 2008 (2008), 1.  doi: 10.1093/imrn/rnn071.  Google Scholar

[15]

M. Isobe, H. Nishimura and K. Horikawa, Expressions of Pertubation Solutions for Conservative Waves by Using Wave Height,, Proceedings of 33rd annual conference of JSCE 1978, (1978), 760.   Google Scholar

[16]

F. John, Partial Differential Equations,, $4^{th}$ edition, (1982).   Google Scholar

[17]

I. G. Jonsson and L. Arneborg, Energy properties and shoaling of higher-order stokes waves on current,, Ocean Engineering, 22 (1995), 819.  doi: 10.1016/0029-8018(95)00008-9.  Google Scholar

[18]

H. Lamb, Hydrodynamics,, Cambridge, (1895).   Google Scholar

[19]

M. S. Longuet-Higgins, Eulerian and Lagrangian aspects of surface waves,, J. Fluid Mech., 173 (1986), 683.  doi: 10.1017/S0022112086001325.  Google Scholar

[20]

, Available at:, , ().   Google Scholar

[21]

H. Okamoto and M. Shōji, The Mathematical Theory of Permanent Progressive Water-Waves,, World Scientific, (2001).   Google Scholar

[22]

H. Okamoto and M. Shōji, Trajectories of fluid particles in a periodic water wave,, Phil. Trans. R. Soc. A, 370 (2012), 1661.  doi: 10.1098/rsta.2011.0447.  Google Scholar

[23]

F. Ruellan and A. Wallet, Trajectoires internes das un clapotis partiel,, La Houille Blanche, 5 (1950), 483.   Google Scholar

[24]

L. Skjelbreia and J. Hendrinck, Fifth Order Gravity Wave Theory,, JProceedings of 7th conference on coastal engineering, (1960), 184.   Google Scholar

[25]

J. J. Stoker, Water Waves. The Mathematical Theory with Applications,, Intersciene Publ. Inc., (1957).   Google Scholar

[26]

G. G. Stokes, On the theory of oscillatory waves,, Trans. Cambridge Phil. Soc., 8 (1847), 441.  doi: 10.1017/CBO9780511702242.013.  Google Scholar

[27]

L. N. Trefethen, Spectral Methods in MATLAB,, SIAM, (2001).  doi: 10.1137/1.9780898719598.  Google Scholar

[28]

M. Umeyama, Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry,, Phil. Trans. R. Soc. A, 370 (2012), 1687.  doi: 10.1098/rsta.2011.0450.  Google Scholar

[29]

F. Ursell, Mass transport in gravity waves,, Proc. Cambridge Phil. Soc., 40 (1953), 145.  doi: 10.1017/S0305004100028140.  Google Scholar

[30]

G. B. Whitham, Linear and Nonlinear Waves,, John Wiley, (1974).   Google Scholar

[1]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[5]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[9]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[10]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[11]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[12]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[13]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[14]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[15]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[16]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[17]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[18]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[19]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[20]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]