August  2014, 34(8): 3155-3170. doi: 10.3934/dcds.2014.34.3155

Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation

1. 

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502

2. 

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan

3. 

Departement Mathematik, ETH Zürich, 8092 Zurich, Switzerland

Received  May 2013 Published  January 2014

Steady-states and traveling-waves of the generalized Constantin--Lax--Majda equation are computed and their asymptotic behavior is described. Their relation with possible blow-up and the Benjamin--Ono equation is discussed.
Citation: Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3155-3170. doi: 10.3934/dcds.2014.34.3155
References:
[1]

H. Brezis, Blow-up for $u_t - \Delta u = g(u)$ revisited,, Adv. Diff. Eqns., 1 (1996), 73.   Google Scholar

[2]

A. Castro and D. Cordoba, Infinite energy solutions of the surface quasi-geostrophic equation,, Adv. Math., 225 (2010), 1820.  doi: 10.1016/j.aim.2010.04.018.  Google Scholar

[3]

A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation,, J. Math. Pure Appl., 86 (2006), 529.  doi: 10.1016/j.matpur.2006.08.002.  Google Scholar

[4]

A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Ann. Math., 162 (2005), 1.  doi: 10.4007/annals.2005.162.1377.  Google Scholar

[5]

P. Constantin, P. D. Lax and A. J. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715.  doi: 10.1002/cpa.3160380605.  Google Scholar

[6]

S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation,, J. Stat. Phys., 59 (1990), 1251.  doi: 10.1007/BF01334750.  Google Scholar

[7]

S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation,, Math. Meth. Appl. Sci., 19 (1996), 1233.  doi: 10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W.  Google Scholar

[8]

J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation,, Comm. Pure Appl. Anal., 11 (2012), 1407.  doi: 10.3934/cpaa.2012.11.1407.  Google Scholar

[9]

M. Fila and H. Matano, Blow-up in nonlinear heat equations from the dynamical systems point of view,, in Handbook of Dynamical Systems, (2002), 723.  doi: 10.1016/S1874-575X(02)80035-2.  Google Scholar

[10]

S. Hamada, Numerical solutions of Serrin's equations by double exponential transformation,, Publ. RIMS, 43 (2007), 795.  doi: 10.2977/prims/1201012042.  Google Scholar

[11]

T. Hou, C. Li, Z. Shi, S. Wang and X. Yu, On singularity formation of a nonlinear nonlocal system,, Arch. Rational Mech. Anal., 199 (2011), 117.  doi: 10.1007/s00205-010-0319-5.  Google Scholar

[12]

Y. Katznelson, An Introduction to Harmonic Analysis,, 3rd Ed., (2004).   Google Scholar

[13]

K. Kobayashi, H. Okamoto and J. Zhu, Numerical computation of water and solitary waves by the double exponential transform,, J. Comp. Appl. Math., 152 (2003), 229.  doi: 10.1016/S0377-0427(02)00708-2.  Google Scholar

[14]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations,, Commun. Math. Phys., 214 (2000), 191.  doi: 10.1007/s002200000267.  Google Scholar

[15]

Yu. P. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, Pergamon Press, (1964).   Google Scholar

[16]

Y. Matsuno, Bilinear Transformation Method,, Academic Press, (1984).   Google Scholar

[17]

M. Mori, A. Nurmuhammad and M. Muhammad, DE-sinc method for second order singularly perturbed boundary value problems,, Japan J. Indust. Appl. Math., 26 (2009), 41.  doi: 10.1007/BF03167545.  Google Scholar

[18]

M. Nagayama, H. Okamoto and J. Zhu, On the blow-up of some similarity solutions of the Navier-Stokes equations,, Quader. di Mat., 10 (2003), 137.   Google Scholar

[19]

K. Ohkitani, The Fefferman-Stein decomposition for the Constantin-Lax-Majda equation: Regularity criteria for inviscid fluid dynamics revisited,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4738639.  Google Scholar

[20]

H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid,, J. Phys. Soc. Japan, 74 (2005), 2737.  doi: 10.1143/JPSJ.74.2737.  Google Scholar

[21]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447.  doi: 10.1088/0951-7715/21/10/013.  Google Scholar

[22]

T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind,, J. Comp. Appl. Math., 234 (2010), 1211.  doi: 10.1016/j.cam.2009.07.049.  Google Scholar

[23]

H. Ono, Algebraic solitary waves in stratified fluids,, J. Phys. Soc. Japan, 39 (1975), 1082.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[24]

E. Yanagida, Blow-up of Solutions of the Nonlinear Heat Equations,, in Blow-up and Aggregation, (2006), 1.   Google Scholar

[25]

M. Wunsch, The generalized Constantin-Lax-Majda equation,, Comm. Math. Sci., 9 (2011), 929.  doi: 10.4310/CMS.2011.v9.n3.a12.  Google Scholar

[26]

M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric,, J. Nonlinear Math. Phys., 17 (2010), 7.  doi: 10.1142/S1402925110000544.  Google Scholar

[27]

M. Wunsch, The generalized Constantin-Lax-Majda equation revisited,, Comm. Math. Sci., 9 (2011), 929.  doi: 10.4310/CMS.2011.v9.n3.a12.  Google Scholar

show all references

References:
[1]

H. Brezis, Blow-up for $u_t - \Delta u = g(u)$ revisited,, Adv. Diff. Eqns., 1 (1996), 73.   Google Scholar

[2]

A. Castro and D. Cordoba, Infinite energy solutions of the surface quasi-geostrophic equation,, Adv. Math., 225 (2010), 1820.  doi: 10.1016/j.aim.2010.04.018.  Google Scholar

[3]

A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation,, J. Math. Pure Appl., 86 (2006), 529.  doi: 10.1016/j.matpur.2006.08.002.  Google Scholar

[4]

A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Ann. Math., 162 (2005), 1.  doi: 10.4007/annals.2005.162.1377.  Google Scholar

[5]

P. Constantin, P. D. Lax and A. J. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715.  doi: 10.1002/cpa.3160380605.  Google Scholar

[6]

S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation,, J. Stat. Phys., 59 (1990), 1251.  doi: 10.1007/BF01334750.  Google Scholar

[7]

S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation,, Math. Meth. Appl. Sci., 19 (1996), 1233.  doi: 10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W.  Google Scholar

[8]

J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation,, Comm. Pure Appl. Anal., 11 (2012), 1407.  doi: 10.3934/cpaa.2012.11.1407.  Google Scholar

[9]

M. Fila and H. Matano, Blow-up in nonlinear heat equations from the dynamical systems point of view,, in Handbook of Dynamical Systems, (2002), 723.  doi: 10.1016/S1874-575X(02)80035-2.  Google Scholar

[10]

S. Hamada, Numerical solutions of Serrin's equations by double exponential transformation,, Publ. RIMS, 43 (2007), 795.  doi: 10.2977/prims/1201012042.  Google Scholar

[11]

T. Hou, C. Li, Z. Shi, S. Wang and X. Yu, On singularity formation of a nonlinear nonlocal system,, Arch. Rational Mech. Anal., 199 (2011), 117.  doi: 10.1007/s00205-010-0319-5.  Google Scholar

[12]

Y. Katznelson, An Introduction to Harmonic Analysis,, 3rd Ed., (2004).   Google Scholar

[13]

K. Kobayashi, H. Okamoto and J. Zhu, Numerical computation of water and solitary waves by the double exponential transform,, J. Comp. Appl. Math., 152 (2003), 229.  doi: 10.1016/S0377-0427(02)00708-2.  Google Scholar

[14]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations,, Commun. Math. Phys., 214 (2000), 191.  doi: 10.1007/s002200000267.  Google Scholar

[15]

Yu. P. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, Pergamon Press, (1964).   Google Scholar

[16]

Y. Matsuno, Bilinear Transformation Method,, Academic Press, (1984).   Google Scholar

[17]

M. Mori, A. Nurmuhammad and M. Muhammad, DE-sinc method for second order singularly perturbed boundary value problems,, Japan J. Indust. Appl. Math., 26 (2009), 41.  doi: 10.1007/BF03167545.  Google Scholar

[18]

M. Nagayama, H. Okamoto and J. Zhu, On the blow-up of some similarity solutions of the Navier-Stokes equations,, Quader. di Mat., 10 (2003), 137.   Google Scholar

[19]

K. Ohkitani, The Fefferman-Stein decomposition for the Constantin-Lax-Majda equation: Regularity criteria for inviscid fluid dynamics revisited,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4738639.  Google Scholar

[20]

H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid,, J. Phys. Soc. Japan, 74 (2005), 2737.  doi: 10.1143/JPSJ.74.2737.  Google Scholar

[21]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447.  doi: 10.1088/0951-7715/21/10/013.  Google Scholar

[22]

T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind,, J. Comp. Appl. Math., 234 (2010), 1211.  doi: 10.1016/j.cam.2009.07.049.  Google Scholar

[23]

H. Ono, Algebraic solitary waves in stratified fluids,, J. Phys. Soc. Japan, 39 (1975), 1082.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[24]

E. Yanagida, Blow-up of Solutions of the Nonlinear Heat Equations,, in Blow-up and Aggregation, (2006), 1.   Google Scholar

[25]

M. Wunsch, The generalized Constantin-Lax-Majda equation,, Comm. Math. Sci., 9 (2011), 929.  doi: 10.4310/CMS.2011.v9.n3.a12.  Google Scholar

[26]

M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric,, J. Nonlinear Math. Phys., 17 (2010), 7.  doi: 10.1142/S1402925110000544.  Google Scholar

[27]

M. Wunsch, The generalized Constantin-Lax-Majda equation revisited,, Comm. Math. Sci., 9 (2011), 929.  doi: 10.4310/CMS.2011.v9.n3.a12.  Google Scholar

[1]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[2]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[5]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[8]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[9]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[14]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[15]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[18]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[19]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[20]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]