August  2014, 34(8): 3155-3170. doi: 10.3934/dcds.2014.34.3155

Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation

1. 

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502

2. 

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan

3. 

Departement Mathematik, ETH Zürich, 8092 Zurich, Switzerland

Received  May 2013 Published  January 2014

Steady-states and traveling-waves of the generalized Constantin--Lax--Majda equation are computed and their asymptotic behavior is described. Their relation with possible blow-up and the Benjamin--Ono equation is discussed.
Citation: Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3155-3170. doi: 10.3934/dcds.2014.34.3155
References:
[1]

H. Brezis, Blow-up for $u_t - \Delta u = g(u)$ revisited,, Adv. Diff. Eqns., 1 (1996), 73. Google Scholar

[2]

A. Castro and D. Cordoba, Infinite energy solutions of the surface quasi-geostrophic equation,, Adv. Math., 225 (2010), 1820. doi: 10.1016/j.aim.2010.04.018. Google Scholar

[3]

A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation,, J. Math. Pure Appl., 86 (2006), 529. doi: 10.1016/j.matpur.2006.08.002. Google Scholar

[4]

A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Ann. Math., 162 (2005), 1. doi: 10.4007/annals.2005.162.1377. Google Scholar

[5]

P. Constantin, P. D. Lax and A. J. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715. doi: 10.1002/cpa.3160380605. Google Scholar

[6]

S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation,, J. Stat. Phys., 59 (1990), 1251. doi: 10.1007/BF01334750. Google Scholar

[7]

S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation,, Math. Meth. Appl. Sci., 19 (1996), 1233. doi: 10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W. Google Scholar

[8]

J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation,, Comm. Pure Appl. Anal., 11 (2012), 1407. doi: 10.3934/cpaa.2012.11.1407. Google Scholar

[9]

M. Fila and H. Matano, Blow-up in nonlinear heat equations from the dynamical systems point of view,, in Handbook of Dynamical Systems, (2002), 723. doi: 10.1016/S1874-575X(02)80035-2. Google Scholar

[10]

S. Hamada, Numerical solutions of Serrin's equations by double exponential transformation,, Publ. RIMS, 43 (2007), 795. doi: 10.2977/prims/1201012042. Google Scholar

[11]

T. Hou, C. Li, Z. Shi, S. Wang and X. Yu, On singularity formation of a nonlinear nonlocal system,, Arch. Rational Mech. Anal., 199 (2011), 117. doi: 10.1007/s00205-010-0319-5. Google Scholar

[12]

Y. Katznelson, An Introduction to Harmonic Analysis,, 3rd Ed., (2004). Google Scholar

[13]

K. Kobayashi, H. Okamoto and J. Zhu, Numerical computation of water and solitary waves by the double exponential transform,, J. Comp. Appl. Math., 152 (2003), 229. doi: 10.1016/S0377-0427(02)00708-2. Google Scholar

[14]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations,, Commun. Math. Phys., 214 (2000), 191. doi: 10.1007/s002200000267. Google Scholar

[15]

Yu. P. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, Pergamon Press, (1964). Google Scholar

[16]

Y. Matsuno, Bilinear Transformation Method,, Academic Press, (1984). Google Scholar

[17]

M. Mori, A. Nurmuhammad and M. Muhammad, DE-sinc method for second order singularly perturbed boundary value problems,, Japan J. Indust. Appl. Math., 26 (2009), 41. doi: 10.1007/BF03167545. Google Scholar

[18]

M. Nagayama, H. Okamoto and J. Zhu, On the blow-up of some similarity solutions of the Navier-Stokes equations,, Quader. di Mat., 10 (2003), 137. Google Scholar

[19]

K. Ohkitani, The Fefferman-Stein decomposition for the Constantin-Lax-Majda equation: Regularity criteria for inviscid fluid dynamics revisited,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4738639. Google Scholar

[20]

H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid,, J. Phys. Soc. Japan, 74 (2005), 2737. doi: 10.1143/JPSJ.74.2737. Google Scholar

[21]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447. doi: 10.1088/0951-7715/21/10/013. Google Scholar

[22]

T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind,, J. Comp. Appl. Math., 234 (2010), 1211. doi: 10.1016/j.cam.2009.07.049. Google Scholar

[23]

H. Ono, Algebraic solitary waves in stratified fluids,, J. Phys. Soc. Japan, 39 (1975), 1082. doi: 10.1143/JPSJ.39.1082. Google Scholar

[24]

E. Yanagida, Blow-up of Solutions of the Nonlinear Heat Equations,, in Blow-up and Aggregation, (2006), 1. Google Scholar

[25]

M. Wunsch, The generalized Constantin-Lax-Majda equation,, Comm. Math. Sci., 9 (2011), 929. doi: 10.4310/CMS.2011.v9.n3.a12. Google Scholar

[26]

M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric,, J. Nonlinear Math. Phys., 17 (2010), 7. doi: 10.1142/S1402925110000544. Google Scholar

[27]

M. Wunsch, The generalized Constantin-Lax-Majda equation revisited,, Comm. Math. Sci., 9 (2011), 929. doi: 10.4310/CMS.2011.v9.n3.a12. Google Scholar

show all references

References:
[1]

H. Brezis, Blow-up for $u_t - \Delta u = g(u)$ revisited,, Adv. Diff. Eqns., 1 (1996), 73. Google Scholar

[2]

A. Castro and D. Cordoba, Infinite energy solutions of the surface quasi-geostrophic equation,, Adv. Math., 225 (2010), 1820. doi: 10.1016/j.aim.2010.04.018. Google Scholar

[3]

A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation,, J. Math. Pure Appl., 86 (2006), 529. doi: 10.1016/j.matpur.2006.08.002. Google Scholar

[4]

A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Ann. Math., 162 (2005), 1. doi: 10.4007/annals.2005.162.1377. Google Scholar

[5]

P. Constantin, P. D. Lax and A. J. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715. doi: 10.1002/cpa.3160380605. Google Scholar

[6]

S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation,, J. Stat. Phys., 59 (1990), 1251. doi: 10.1007/BF01334750. Google Scholar

[7]

S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation,, Math. Meth. Appl. Sci., 19 (1996), 1233. doi: 10.1002/(SICI)1099-1476(199610)19:15<1233::AID-MMA828>3.0.CO;2-W. Google Scholar

[8]

J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation,, Comm. Pure Appl. Anal., 11 (2012), 1407. doi: 10.3934/cpaa.2012.11.1407. Google Scholar

[9]

M. Fila and H. Matano, Blow-up in nonlinear heat equations from the dynamical systems point of view,, in Handbook of Dynamical Systems, (2002), 723. doi: 10.1016/S1874-575X(02)80035-2. Google Scholar

[10]

S. Hamada, Numerical solutions of Serrin's equations by double exponential transformation,, Publ. RIMS, 43 (2007), 795. doi: 10.2977/prims/1201012042. Google Scholar

[11]

T. Hou, C. Li, Z. Shi, S. Wang and X. Yu, On singularity formation of a nonlinear nonlocal system,, Arch. Rational Mech. Anal., 199 (2011), 117. doi: 10.1007/s00205-010-0319-5. Google Scholar

[12]

Y. Katznelson, An Introduction to Harmonic Analysis,, 3rd Ed., (2004). Google Scholar

[13]

K. Kobayashi, H. Okamoto and J. Zhu, Numerical computation of water and solitary waves by the double exponential transform,, J. Comp. Appl. Math., 152 (2003), 229. doi: 10.1016/S0377-0427(02)00708-2. Google Scholar

[14]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations,, Commun. Math. Phys., 214 (2000), 191. doi: 10.1007/s002200000267. Google Scholar

[15]

Yu. P. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations,, Pergamon Press, (1964). Google Scholar

[16]

Y. Matsuno, Bilinear Transformation Method,, Academic Press, (1984). Google Scholar

[17]

M. Mori, A. Nurmuhammad and M. Muhammad, DE-sinc method for second order singularly perturbed boundary value problems,, Japan J. Indust. Appl. Math., 26 (2009), 41. doi: 10.1007/BF03167545. Google Scholar

[18]

M. Nagayama, H. Okamoto and J. Zhu, On the blow-up of some similarity solutions of the Navier-Stokes equations,, Quader. di Mat., 10 (2003), 137. Google Scholar

[19]

K. Ohkitani, The Fefferman-Stein decomposition for the Constantin-Lax-Majda equation: Regularity criteria for inviscid fluid dynamics revisited,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4738639. Google Scholar

[20]

H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid,, J. Phys. Soc. Japan, 74 (2005), 2737. doi: 10.1143/JPSJ.74.2737. Google Scholar

[21]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447. doi: 10.1088/0951-7715/21/10/013. Google Scholar

[22]

T. Okayama, T. Matsuo and M. Sugihara, Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind,, J. Comp. Appl. Math., 234 (2010), 1211. doi: 10.1016/j.cam.2009.07.049. Google Scholar

[23]

H. Ono, Algebraic solitary waves in stratified fluids,, J. Phys. Soc. Japan, 39 (1975), 1082. doi: 10.1143/JPSJ.39.1082. Google Scholar

[24]

E. Yanagida, Blow-up of Solutions of the Nonlinear Heat Equations,, in Blow-up and Aggregation, (2006), 1. Google Scholar

[25]

M. Wunsch, The generalized Constantin-Lax-Majda equation,, Comm. Math. Sci., 9 (2011), 929. doi: 10.4310/CMS.2011.v9.n3.a12. Google Scholar

[26]

M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric,, J. Nonlinear Math. Phys., 17 (2010), 7. doi: 10.1142/S1402925110000544. Google Scholar

[27]

M. Wunsch, The generalized Constantin-Lax-Majda equation revisited,, Comm. Math. Sci., 9 (2011), 929. doi: 10.4310/CMS.2011.v9.n3.a12. Google Scholar

[1]

Tomoyuki Miyaji, Yoshio Tsutsumi. Steady-state mode interactions of radially symmetric modes for the Lugiato-Lefever equation on a disk. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1633-1650. doi: 10.3934/cpaa.2018078

[2]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[3]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[4]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[5]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[6]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

[7]

Wing-Cheong Lo. Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 775-787. doi: 10.3934/dcdsb.2014.19.775

[8]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[9]

Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135

[10]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[11]

Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691

[12]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[13]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[14]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[15]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[16]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[17]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[18]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[19]

Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029

[20]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]