August  2014, 34(8): 3183-3192. doi: 10.3934/dcds.2014.34.3183

Internal Gerstner waves on a sloping bed

1. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna

Received  September 2013 Revised  October 2013 Published  January 2014

We provide an explicit solution to the full, nonlinear governing equations for gravity water waves describing internal edge waves along a sloping bed. This solution is based on the Gerstner edge wave. We discuss the relation of this internal, trochoidal edge wave to the analogous wave found in the linear theory, compare it with the classical Gerstner wave, as well as discuss the inclusion of Coriolis forces in the f-plane approximation.
Citation: Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183
References:
[1]

A. Aleman and A. Constantin, Harmonic maps and ideal fluid flows,, Arch. Rat. Mech. Anal., 204 (2012), 479. doi: 10.1007/s00205-011-0483-2. Google Scholar

[2]

A. Bennett, Lagrangian Fluid Dynamics,, Cambridge University Press, (2006). doi: 10.1017/CBO9780511734939. Google Scholar

[3]

B. Bolzano, Leben franz joseph ritters von gerstner,, Abhandlungen der kön. böhmischen Gesellschaft der Wissenschaften, (1837). Google Scholar

[4]

A. Constantin, Edge waves along a sloping beach,, J. Phys. A: Mathematical General, 34 (2001), 9723. doi: 10.1088/0305-4470/34/45/311. Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves,, J. Geophys. Res., 117 (2012). doi: 10.1029/2012JC007879. Google Scholar

[7]

A. Constantin, On the modelling of equatorial waves,, Geophys. Res. Lett., 39 (2012), 1. doi: 10.1029/2012GL051169. Google Scholar

[8]

A. Constantin, Some three-dimensional non-linear equatorial flows,, J. Phys. Oceanography, 43 (2013), 165. Google Scholar

[9]

A. Constantin, M. Ehrnström and G. Villari, Particle trajectories in linear deep-water waves,, Nonlinear Anal. Real World Appl., 9 (2008), 1336. doi: 10.1016/j.nonrwa.2007.03.003. Google Scholar

[10]

A. Constantin and P. Germain, Instability of some equatorially trapped waves,, J. Geophys. Res.-Oceans, 118 (2013), 2802. doi: 10.1002/jgrc.20219. Google Scholar

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Commun. Pure Appl. Math., 63 (2010), 533. doi: 10.1002/cpa.20299. Google Scholar

[12]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fluid Mech., 10 (2006), 1. doi: 10.1007/s00021-005-0214-2. Google Scholar

[13]

D. Farmer and J. Smith, Nonlinear internal waves in a fjord,, in Elsevier Oceanography Series (editor, 23 (1978), 465. doi: 10.1016/S0422-9894(08)71294-7. Google Scholar

[14]

W. Froude, On the rolling of ships,, Transactions of the Institution of Naval Architects, 11 (1861), 180. doi: 10.1080/03071847309433595. Google Scholar

[15]

C. Garrett and W. Munk, Internal waves in the ocean,, Annual Review of Fluid Mechanics, (1979), 339. doi: 10.1146/annurev.fl.11.010179.002011. Google Scholar

[16]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten theorie der deichprofile,, Abh. der kön. böhmischen Gesellschaft der Wissenschaften, (1804). Google Scholar

[17]

F. Gerstner, Theorie der Wellen,, Ann. Phys., 32 (1809), 412. doi: 10.1002/andp.18090320808. Google Scholar

[18]

K. R. Helfrich and W. K. Melville, Long nonlinear internal waves,, Ann. Rev. Fluid Mech., 38 (2006), 395. doi: 10.1146/annurev.fluid.38.050304.092129. Google Scholar

[19]

D. Henry, On the deep-water stokes wave flow,, Int. Math. Res. Not., 2008 (2008). doi: 10.1093/imrn/rnn071. Google Scholar

[20]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current,, Eur. J. Mech. - B/Fluids, 38 (2013), 18. doi: 10.1016/j.euromechflu.2012.10.001. Google Scholar

[21]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge University Press, (1997). doi: 10.1017/CBO9780511624056. Google Scholar

[22]

R. S. Johnson, Edge waves: Theories past and present,, Philos. Trans. Roy. Soc. London Ser. A, 365 (2007), 2359. doi: 10.1098/rsta.2007.2013. Google Scholar

[23]

H. Kalisch, Periodic traveling water waves with isobaric streamlines,, J. Non-linear Math. Phys., 11 (2004), 461. doi: 10.2991/jnmp.2004.11.4.3. Google Scholar

[24]

P. D. Komar, Beach processes and sedimentation,, Prentice-Hall, (1976). Google Scholar

[25]

A.-V. Matioco, An exact solution for geophysical equatorial edge waves over a sloping beach,, J. Phys. A, 45 (2012). doi: 10.1142/S1402925112400098. Google Scholar

[26]

A.-V. Matioc and B.-V. Matioc, On periodic water waves with Coriolis effects and isobaric streamlines,, J. Nonlinear Math. Phys., 19 (2012). doi: 10.1142/S1402925112400098. Google Scholar

[27]

E. G. Morozov and A. V. Marchenko, Short-period internal waves in an arctic Fjord (Spitsbergen),, Izv. Atmos. Ocean. Phy., 48 (2012), 401. doi: 10.1134/S0001433812040123. Google Scholar

[28]

L. Mysak, Topographically trapped waves,, Ann. Rev. Fluid Mech., 12 (1980), 45. Google Scholar

[29]

F. Nansen, The Norwegian North Polar Expedition 1893-1896, Scientific Results, Volume 5,, The Fridtjof Nansen Fund for the Advancement of Science, (1906). Google Scholar

[30]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer, (1982). doi: 10.1115/1.3157711. Google Scholar

[31]

W. J. M. Rankine, On the exact form of waves near the surface of deep water,, Philos. Trans. Roy. Soc. London Ser. A, 153 (1863), 127. doi: 10.1098/rstl.1863.0006. Google Scholar

[32]

F. Reech, Sur la theorie des ondes liquides periodiques,, Comptes Rendus Acad. Sci. Paris, 68 (1869), 1099. Google Scholar

[33]

G. G. Stokes, Report on recent researches in hydrodynamics,, in Brit. Assoc. Rep., (1846). doi: 10.1017/CBO9780511702242.011. Google Scholar

[34]

G. G. Stokes, On the theory of oscillatory waves,, Trans. Camb. Phil. Soc., 8 (1847), 441. doi: 10.1017/CBO9780511702242.013. Google Scholar

[35]

R. Stuhlmeier, Internal Gerstner waves: applications to dead water,, Appl. Anal., (). doi: 10.1080/00036811.2013.833609. Google Scholar

[36]

C. Truesdell, The Kinematics of Vorticity,, Indiana University Press, (1954). Google Scholar

[37]

M. Umeyama, Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry,, Philos. Trans. Roy. Soc. London Ser. A, 370 (2012), 1687. doi: 10.1098/rsta.2011.0450. Google Scholar

[38]

C. Yih, Note on edge waves in a stratified fluid,, J. Fluid Mech., 24 (1966), 765. doi: 10.1017/S0022112066000983. Google Scholar

show all references

References:
[1]

A. Aleman and A. Constantin, Harmonic maps and ideal fluid flows,, Arch. Rat. Mech. Anal., 204 (2012), 479. doi: 10.1007/s00205-011-0483-2. Google Scholar

[2]

A. Bennett, Lagrangian Fluid Dynamics,, Cambridge University Press, (2006). doi: 10.1017/CBO9780511734939. Google Scholar

[3]

B. Bolzano, Leben franz joseph ritters von gerstner,, Abhandlungen der kön. böhmischen Gesellschaft der Wissenschaften, (1837). Google Scholar

[4]

A. Constantin, Edge waves along a sloping beach,, J. Phys. A: Mathematical General, 34 (2001), 9723. doi: 10.1088/0305-4470/34/45/311. Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves,, J. Geophys. Res., 117 (2012). doi: 10.1029/2012JC007879. Google Scholar

[7]

A. Constantin, On the modelling of equatorial waves,, Geophys. Res. Lett., 39 (2012), 1. doi: 10.1029/2012GL051169. Google Scholar

[8]

A. Constantin, Some three-dimensional non-linear equatorial flows,, J. Phys. Oceanography, 43 (2013), 165. Google Scholar

[9]

A. Constantin, M. Ehrnström and G. Villari, Particle trajectories in linear deep-water waves,, Nonlinear Anal. Real World Appl., 9 (2008), 1336. doi: 10.1016/j.nonrwa.2007.03.003. Google Scholar

[10]

A. Constantin and P. Germain, Instability of some equatorially trapped waves,, J. Geophys. Res.-Oceans, 118 (2013), 2802. doi: 10.1002/jgrc.20219. Google Scholar

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Commun. Pure Appl. Math., 63 (2010), 533. doi: 10.1002/cpa.20299. Google Scholar

[12]

A. Constantin and G. Villari, Particle trajectories in linear water waves,, J. Math. Fluid Mech., 10 (2006), 1. doi: 10.1007/s00021-005-0214-2. Google Scholar

[13]

D. Farmer and J. Smith, Nonlinear internal waves in a fjord,, in Elsevier Oceanography Series (editor, 23 (1978), 465. doi: 10.1016/S0422-9894(08)71294-7. Google Scholar

[14]

W. Froude, On the rolling of ships,, Transactions of the Institution of Naval Architects, 11 (1861), 180. doi: 10.1080/03071847309433595. Google Scholar

[15]

C. Garrett and W. Munk, Internal waves in the ocean,, Annual Review of Fluid Mechanics, (1979), 339. doi: 10.1146/annurev.fl.11.010179.002011. Google Scholar

[16]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten theorie der deichprofile,, Abh. der kön. böhmischen Gesellschaft der Wissenschaften, (1804). Google Scholar

[17]

F. Gerstner, Theorie der Wellen,, Ann. Phys., 32 (1809), 412. doi: 10.1002/andp.18090320808. Google Scholar

[18]

K. R. Helfrich and W. K. Melville, Long nonlinear internal waves,, Ann. Rev. Fluid Mech., 38 (2006), 395. doi: 10.1146/annurev.fluid.38.050304.092129. Google Scholar

[19]

D. Henry, On the deep-water stokes wave flow,, Int. Math. Res. Not., 2008 (2008). doi: 10.1093/imrn/rnn071. Google Scholar

[20]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current,, Eur. J. Mech. - B/Fluids, 38 (2013), 18. doi: 10.1016/j.euromechflu.2012.10.001. Google Scholar

[21]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge University Press, (1997). doi: 10.1017/CBO9780511624056. Google Scholar

[22]

R. S. Johnson, Edge waves: Theories past and present,, Philos. Trans. Roy. Soc. London Ser. A, 365 (2007), 2359. doi: 10.1098/rsta.2007.2013. Google Scholar

[23]

H. Kalisch, Periodic traveling water waves with isobaric streamlines,, J. Non-linear Math. Phys., 11 (2004), 461. doi: 10.2991/jnmp.2004.11.4.3. Google Scholar

[24]

P. D. Komar, Beach processes and sedimentation,, Prentice-Hall, (1976). Google Scholar

[25]

A.-V. Matioco, An exact solution for geophysical equatorial edge waves over a sloping beach,, J. Phys. A, 45 (2012). doi: 10.1142/S1402925112400098. Google Scholar

[26]

A.-V. Matioc and B.-V. Matioc, On periodic water waves with Coriolis effects and isobaric streamlines,, J. Nonlinear Math. Phys., 19 (2012). doi: 10.1142/S1402925112400098. Google Scholar

[27]

E. G. Morozov and A. V. Marchenko, Short-period internal waves in an arctic Fjord (Spitsbergen),, Izv. Atmos. Ocean. Phy., 48 (2012), 401. doi: 10.1134/S0001433812040123. Google Scholar

[28]

L. Mysak, Topographically trapped waves,, Ann. Rev. Fluid Mech., 12 (1980), 45. Google Scholar

[29]

F. Nansen, The Norwegian North Polar Expedition 1893-1896, Scientific Results, Volume 5,, The Fridtjof Nansen Fund for the Advancement of Science, (1906). Google Scholar

[30]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer, (1982). doi: 10.1115/1.3157711. Google Scholar

[31]

W. J. M. Rankine, On the exact form of waves near the surface of deep water,, Philos. Trans. Roy. Soc. London Ser. A, 153 (1863), 127. doi: 10.1098/rstl.1863.0006. Google Scholar

[32]

F. Reech, Sur la theorie des ondes liquides periodiques,, Comptes Rendus Acad. Sci. Paris, 68 (1869), 1099. Google Scholar

[33]

G. G. Stokes, Report on recent researches in hydrodynamics,, in Brit. Assoc. Rep., (1846). doi: 10.1017/CBO9780511702242.011. Google Scholar

[34]

G. G. Stokes, On the theory of oscillatory waves,, Trans. Camb. Phil. Soc., 8 (1847), 441. doi: 10.1017/CBO9780511702242.013. Google Scholar

[35]

R. Stuhlmeier, Internal Gerstner waves: applications to dead water,, Appl. Anal., (). doi: 10.1080/00036811.2013.833609. Google Scholar

[36]

C. Truesdell, The Kinematics of Vorticity,, Indiana University Press, (1954). Google Scholar

[37]

M. Umeyama, Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry,, Philos. Trans. Roy. Soc. London Ser. A, 370 (2012), 1687. doi: 10.1098/rsta.2011.0450. Google Scholar

[38]

C. Yih, Note on edge waves in a stratified fluid,, J. Fluid Mech., 24 (1966), 765. doi: 10.1017/S0022112066000983. Google Scholar

[1]

Anatoly Abrashkin. Wind generated equatorial Gerstner-type waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4443-4453. doi: 10.3934/dcds.2019181

[2]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[3]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[4]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[5]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[6]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[7]

Tony Lyons. Geophysical internal equatorial waves of extreme form. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4471-4486. doi: 10.3934/dcds.2019183

[8]

Mateusz Kluczek. Nonhydrostatic Pollard-like internal geophysical waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5171-5183. doi: 10.3934/dcds.2019210

[9]

Sergey V. Dmitriev, Asiya A. Nazarova, Anatoliy I. Pshenichnyuk, Albert M. Iskandarov. Dynamics of edge dislocation clusters interacting with running acoustic waves. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1079-1094. doi: 10.3934/dcdss.2011.4.1079

[10]

Delia Ionescu-Kruse. Short-wavelength instabilities of edge waves in stratified water. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2053-2066. doi: 10.3934/dcds.2015.35.2053

[11]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[12]

Ralph Lteif, Samer Israwi, Raafat Talhouk. An improved result for the full justification of asymptotic models for the propagation of internal waves. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2203-2230. doi: 10.3934/cpaa.2015.14.2203

[13]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[14]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[15]

Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1

[16]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[17]

Mikhail Kovalyov. On the nature of large and rogue waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3061-3093. doi: 10.3934/dcds.2014.34.3061

[18]

Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847

[19]

Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951

[20]

Paolo Paoletti. Acceleration waves in complex materials. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 637-659. doi: 10.3934/dcdsb.2012.17.637

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]