September  2014, 34(9): 3535-3554. doi: 10.3934/dcds.2014.34.3535

Some results for the Perelman LYH-type inequality

1. 

Department of Mathematics, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, R.O.C, Taiwan

Received  December 2012 Revised  November 2013 Published  March 2014

Let $(M,g(t))$, $0\le t\le T$, $\partial M\ne\phi$, be a compact $n$-dimensional manifold, $n\ge 2$, with metric $g(t)$ evolving by the Ricci flow such that the second fundamental form of $\partial M$ with respect to the unit outward normal of $\partial M$ is uniformly bounded below on $\partial M\times [0,T]$. We will prove a global Li-Yau gradient estimate for the solution of the generalized conjugate heat equation on $M\times [0,T]$. We will give another proof of Perelman's Li-Yau-Hamilton type inequality for the fundamental solution of the conjugate heat equation on closed manifolds without using the properties of the reduced distance. We will also prove various gradient estimates for the Dirichlet fundamental solution of the conjugate heat equation.
Citation: Shu-Yu Hsu. Some results for the Perelman LYH-type inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3535-3554. doi: 10.3934/dcds.2014.34.3535
References:
[1]

A. Chau, L. F. Tam and C. Yu, Pseudolocality for the Ricci flow and applications,, Canad. J. Math., 63 (2011), 55. doi: 10.4153/CJM-2010-076-2. Google Scholar

[2]

I. Chavel, Riemannian geometry: A modern introduction,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511616822. Google Scholar

[3]

R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifold,, Proc. AMS, 108 (1990), 961. doi: 10.1090/S0002-9939-1990-0993745-X. Google Scholar

[4]

B. Chow, P. Lu and L. Ni, Hamilton's Ricci flow,, Graduate Studies in Mathematics, (2006). Google Scholar

[5]

R. S. Hamilton, The formation of singularities in the Ricci flow,, in Surveys in differential geometry, (1995), 7. Google Scholar

[6]

S. Y. Hsu, Uniqueness of solutions of Ricci flow on complete noncompact manifolds,, , (). Google Scholar

[7]

S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow,, J. Funct. Anal., 255 (2008), 1008. doi: 10.1016/j.jfa.2008.05.014. Google Scholar

[8]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type,, Transl. Math. Mono. Vol 23, (1968). Google Scholar

[9]

P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator,, Acta Math., 156 (1986), 153. doi: 10.1007/BF02399203. Google Scholar

[10]

L. Ni, The entropy formula for linear heat equation,, J. Geometric Analysis, 14 (2004), 87. doi: 10.1007/BF02921867. Google Scholar

[11]

L. Ni, Addenda to "The entropy formula for linear heat equation'',, J. Geometric Analysis, 14 (2004), 369. doi: 10.1007/BF02922078. Google Scholar

[12]

L. Ni, A note on Perelman's LYH-type inequality,, Comm. Anal. and Geom., 14 (2006), 883. doi: 10.4310/CAG.2006.v14.n5.a3. Google Scholar

[13]

G. Perelman, The entropy formula for the Ricci flow and its geometric applications,, , (). Google Scholar

[14]

R. Schoen and S. T. Yau, Lectures on Differential Geometry,, International Press, (1994). Google Scholar

[15]

P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds,, Bull. London math. Soc., 38 (2006), 1045. doi: 10.1112/S0024609306018947. Google Scholar

[16]

J. Wang, Global heat kernel estimates,, Pacific J. Math., 178(2) (1997), 377. doi: 10.2140/pjm.1997.178.377. Google Scholar

[17]

F. W. Warner, Extension of the Rauch comparison theorem to submanifolds,, Trans. Amer. Math. Soc., 122 (1966), 341. Google Scholar

[18]

Q. S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman,, Int. Math. Res. Notice, (2006). doi: 10.1155/IMRN/2006/92314. Google Scholar

show all references

References:
[1]

A. Chau, L. F. Tam and C. Yu, Pseudolocality for the Ricci flow and applications,, Canad. J. Math., 63 (2011), 55. doi: 10.4153/CJM-2010-076-2. Google Scholar

[2]

I. Chavel, Riemannian geometry: A modern introduction,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511616822. Google Scholar

[3]

R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifold,, Proc. AMS, 108 (1990), 961. doi: 10.1090/S0002-9939-1990-0993745-X. Google Scholar

[4]

B. Chow, P. Lu and L. Ni, Hamilton's Ricci flow,, Graduate Studies in Mathematics, (2006). Google Scholar

[5]

R. S. Hamilton, The formation of singularities in the Ricci flow,, in Surveys in differential geometry, (1995), 7. Google Scholar

[6]

S. Y. Hsu, Uniqueness of solutions of Ricci flow on complete noncompact manifolds,, , (). Google Scholar

[7]

S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow,, J. Funct. Anal., 255 (2008), 1008. doi: 10.1016/j.jfa.2008.05.014. Google Scholar

[8]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type,, Transl. Math. Mono. Vol 23, (1968). Google Scholar

[9]

P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator,, Acta Math., 156 (1986), 153. doi: 10.1007/BF02399203. Google Scholar

[10]

L. Ni, The entropy formula for linear heat equation,, J. Geometric Analysis, 14 (2004), 87. doi: 10.1007/BF02921867. Google Scholar

[11]

L. Ni, Addenda to "The entropy formula for linear heat equation'',, J. Geometric Analysis, 14 (2004), 369. doi: 10.1007/BF02922078. Google Scholar

[12]

L. Ni, A note on Perelman's LYH-type inequality,, Comm. Anal. and Geom., 14 (2006), 883. doi: 10.4310/CAG.2006.v14.n5.a3. Google Scholar

[13]

G. Perelman, The entropy formula for the Ricci flow and its geometric applications,, , (). Google Scholar

[14]

R. Schoen and S. T. Yau, Lectures on Differential Geometry,, International Press, (1994). Google Scholar

[15]

P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds,, Bull. London math. Soc., 38 (2006), 1045. doi: 10.1112/S0024609306018947. Google Scholar

[16]

J. Wang, Global heat kernel estimates,, Pacific J. Math., 178(2) (1997), 377. doi: 10.2140/pjm.1997.178.377. Google Scholar

[17]

F. W. Warner, Extension of the Rauch comparison theorem to submanifolds,, Trans. Amer. Math. Soc., 122 (1966), 341. Google Scholar

[18]

Q. S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman,, Int. Math. Res. Notice, (2006). doi: 10.1155/IMRN/2006/92314. Google Scholar

[1]

Piotr Pokora. The orbifold Langer-Miyaoka-Yau Inequality and Hirzebruch-type inequalities. Electronic Research Announcements, 2017, 24: 21-27. doi: 10.3934/era.2017.24.003

[2]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[3]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[4]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[5]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[6]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[7]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[8]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[9]

Stephen Coughlan, Łukasz Gołębiowski, Grzegorz Kapustka, Michał Kapustka. Arithmetically Gorenstein Calabi--Yau threefolds in $\mathbb{P}^7$. Electronic Research Announcements, 2016, 23: 52-68. doi: 10.3934/era.2016.23.006

[10]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[11]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[12]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[13]

Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019

[14]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[15]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[16]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[17]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[18]

Yigui Ou, Haichan Lin. A class of accelerated conjugate-gradient-like methods based on a modified secant equation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019013

[19]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[20]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]