September  2014, 34(9): 3747-3759. doi: 10.3934/dcds.2014.34.3747

Memory loss for nonequilibrium open dynamical systems

1. 

Department of Mathematics, University of Houston, 651 PGH Hall, Houston, TX 77204, United States, United States

Received  March 2013 Revised  December 2013 Published  March 2014

We introduce a notion of conditional memory loss for nonequilibrium open dynamical systems. We prove that this type of memory loss occurs at an exponential rate for nonequilibrium open systems generated by one-dimensional piecewise-differentiable expanding Lasota-Yorke maps. This result may be viewed as a prototype for time-dependent dynamical systems with holes.
Citation: Anushaya Mohapatra, William Ott. Memory loss for nonequilibrium open dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3747-3759. doi: 10.3934/dcds.2014.34.3747
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998). Google Scholar

[2]

P. H. Baxendale, Stability and equilibrium properties of stochastic flows of diffeomorphisms,, in Diffusion Processes and Related Problems in Analysis, 27 (1992), 3. Google Scholar

[3]

G. Birkhoff, Lattice Theory,, Third edition, (1967). Google Scholar

[4]

H. Bruin, M. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes,, Ergodic Theory Dynam. Systems, 30 (2010), 687. doi: 10.1017/S0143385709000200. Google Scholar

[5]

M. Demers, P. Wright and L.-S. Young, Escape rates and physically relevant measures for billiards with small holes,, Comm. Math. Phys., 294 (2010), 353. doi: 10.1007/s00220-009-0941-y. Google Scholar

[6]

M. F. Demers, P. Wright and L.-S. Young, Entropy, Lyapunov exponents and escape rates in open systems,, Ergodic Theory Dynam. Systems, 32 (2012), 1270. doi: 10.1017/S0143385711000344. Google Scholar

[7]

M. F. Demers and L.-S. Young, Escape rates and conditionally invariant measures,, Nonlinearity, 19 (2006), 377. doi: 10.1088/0951-7715/19/2/008. Google Scholar

[8]

C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension,, Math. Res. Lett., 20 (2013), 141. doi: 10.4310/MRL.2013.v20.n1.a12. Google Scholar

[9]

H. Kunita, Stochastic Flows and Stochastic Differential Equations,, Cambridge Studies in Advanced Mathematics, (1990). Google Scholar

[10]

Y. Le Jan, On isotropic Brownian motions,, Z. Wahrsch. Verw. Gebiete, 70 (1985), 609. Google Scholar

[11]

F. Ledrappier and L.-S. Young, Entropy formula for random transformations,, Probab. Theory Related Fields, 80 (1988), 217. doi: 10.1007/BF00356103. Google Scholar

[12]

K. K. Lin, E. Shea-Brown and L.-S. Young, Reliability of coupled oscillators,, J. Nonlinear Sci., 19 (2009), 497. doi: 10.1007/s00332-009-9042-5. Google Scholar

[13]

C. Liverani and V. Maume-Deschamps, Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set,, Ann. Inst. H. Poincaré Probab. Statist., 39 (2003), 385. doi: 10.1016/S0246-0203(02)00005-5. Google Scholar

[14]

N. Masmoudi and L.-S. Young, Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs,, Comm. Math. Phys., 227 (2002), 461. doi: 10.1007/s002200200639. Google Scholar

[15]

J. C. Mattingly, Ergodicity of $2$D Navier-Stokes equations with random forcing and large viscosity,, Comm. Math. Phys., 206 (1999), 273. doi: 10.1007/s002200050706. Google Scholar

[16]

W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems,, Math. Res. Lett., 16 (2009), 463. doi: 10.4310/MRL.2009.v16.n3.a7. Google Scholar

[17]

M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms,, Nonlinearity, 24 (2011), 2991. doi: 10.1088/0951-7715/24/10/016. Google Scholar

[18]

M. Stenlund, L.-S. Young and H.-K. Zhang, Dispersing billiards with moving scatterers,, Comm. Math. Phys., 322 (2013), 909. doi: 10.1007/s00220-013-1746-6. Google Scholar

[19]

H. v. d. Bedem and N. Chernov, Expanding maps of an interval with holes,, Ergodic Theory Dynam. Systems, 22 (2002), 637. doi: 10.1017/S0143385702000329. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998). Google Scholar

[2]

P. H. Baxendale, Stability and equilibrium properties of stochastic flows of diffeomorphisms,, in Diffusion Processes and Related Problems in Analysis, 27 (1992), 3. Google Scholar

[3]

G. Birkhoff, Lattice Theory,, Third edition, (1967). Google Scholar

[4]

H. Bruin, M. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes,, Ergodic Theory Dynam. Systems, 30 (2010), 687. doi: 10.1017/S0143385709000200. Google Scholar

[5]

M. Demers, P. Wright and L.-S. Young, Escape rates and physically relevant measures for billiards with small holes,, Comm. Math. Phys., 294 (2010), 353. doi: 10.1007/s00220-009-0941-y. Google Scholar

[6]

M. F. Demers, P. Wright and L.-S. Young, Entropy, Lyapunov exponents and escape rates in open systems,, Ergodic Theory Dynam. Systems, 32 (2012), 1270. doi: 10.1017/S0143385711000344. Google Scholar

[7]

M. F. Demers and L.-S. Young, Escape rates and conditionally invariant measures,, Nonlinearity, 19 (2006), 377. doi: 10.1088/0951-7715/19/2/008. Google Scholar

[8]

C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension,, Math. Res. Lett., 20 (2013), 141. doi: 10.4310/MRL.2013.v20.n1.a12. Google Scholar

[9]

H. Kunita, Stochastic Flows and Stochastic Differential Equations,, Cambridge Studies in Advanced Mathematics, (1990). Google Scholar

[10]

Y. Le Jan, On isotropic Brownian motions,, Z. Wahrsch. Verw. Gebiete, 70 (1985), 609. Google Scholar

[11]

F. Ledrappier and L.-S. Young, Entropy formula for random transformations,, Probab. Theory Related Fields, 80 (1988), 217. doi: 10.1007/BF00356103. Google Scholar

[12]

K. K. Lin, E. Shea-Brown and L.-S. Young, Reliability of coupled oscillators,, J. Nonlinear Sci., 19 (2009), 497. doi: 10.1007/s00332-009-9042-5. Google Scholar

[13]

C. Liverani and V. Maume-Deschamps, Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set,, Ann. Inst. H. Poincaré Probab. Statist., 39 (2003), 385. doi: 10.1016/S0246-0203(02)00005-5. Google Scholar

[14]

N. Masmoudi and L.-S. Young, Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs,, Comm. Math. Phys., 227 (2002), 461. doi: 10.1007/s002200200639. Google Scholar

[15]

J. C. Mattingly, Ergodicity of $2$D Navier-Stokes equations with random forcing and large viscosity,, Comm. Math. Phys., 206 (1999), 273. doi: 10.1007/s002200050706. Google Scholar

[16]

W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems,, Math. Res. Lett., 16 (2009), 463. doi: 10.4310/MRL.2009.v16.n3.a7. Google Scholar

[17]

M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms,, Nonlinearity, 24 (2011), 2991. doi: 10.1088/0951-7715/24/10/016. Google Scholar

[18]

M. Stenlund, L.-S. Young and H.-K. Zhang, Dispersing billiards with moving scatterers,, Comm. Math. Phys., 322 (2013), 909. doi: 10.1007/s00220-013-1746-6. Google Scholar

[19]

H. v. d. Bedem and N. Chernov, Expanding maps of an interval with holes,, Ergodic Theory Dynam. Systems, 22 (2002), 637. doi: 10.1017/S0143385702000329. Google Scholar

[1]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[2]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[3]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[4]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

[5]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[6]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure & Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[7]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

[8]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[9]

Karsten Keller, Sergiy Maksymenko, Inga Stolz. Entropy determination based on the ordinal structure of a dynamical system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3507-3524. doi: 10.3934/dcdsb.2015.20.3507

[10]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[11]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[12]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[13]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[14]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[15]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[16]

Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczyński, Heinz Schättler. Treatment of glioma with virotherapy and TNF-α inhibitors: Analysis as a dynamical system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 425-441. doi: 10.3934/dcdsb.2018029

[17]

Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3011-3042. doi: 10.3934/dcds.2013.33.3011

[18]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[19]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[20]

Chin-Chin Wu. Monotonicity and uniqueness of wave profiles for a three components lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2813-2827. doi: 10.3934/dcds.2017121

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]