2014, 34(11): 4515-4535. doi: 10.3934/dcds.2014.34.4515

Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation

1. 

Institut für Mathematik, Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria, Austria

Received  November 2013 Revised  March 2014 Published  May 2014

We consider a nonlinear fourth order in space partial differential equation arising in the context of the modeling of nonlinear acoustic wave propagation in thermally relaxing viscous fluids.
    We use the theory of operator semigroups in order to investigate the linearization of the underlying model and see that the underlying semigroup is analytic. This leads to exponential decay results for the linear homogeneous equation.
    Moreover, we prove local in time well-posedness of the model under the assumption that initial data are sufficiently small by employing a fixed point argument. Global in time well-posedness is obtained by performing energy estimates and using the classical barrier method, again for sufficiently small initial data.
    Additionally, we provide results concerning exponential decay of solutions of the nonlinear equation.
Citation: Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15. doi: 10.2140/pjm.1989.136.15.

[4]

F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321.

[5]

D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11. doi: 10.1146/annurev.fl.11.010179.000303.

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).

[7]

L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).

[8]

H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997). doi: 10.1121/1.426968.

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77. doi: 10.1016/j.physleta.2004.03.067.

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503. doi: 10.3934/dcdss.2009.2.503.

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295. doi: 10.1002/mana.201000007.

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012). doi: 10.1142/S0218202512500352.

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004). doi: 10.1007/978-3-662-05358-4.

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467.

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1. doi: 10.1016/S0898-1221(97)00072-2.

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983). doi: 10.1007/978-1-4612-5561-1.

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337. doi: 10.1016/j.crma.2007.01.010.

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316.

[24]

P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535. doi: 10.1121/1.1918525.

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15. doi: 10.2140/pjm.1989.136.15.

[4]

F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321.

[5]

D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11. doi: 10.1146/annurev.fl.11.010179.000303.

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).

[7]

L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).

[8]

H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997). doi: 10.1121/1.426968.

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77. doi: 10.1016/j.physleta.2004.03.067.

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503. doi: 10.3934/dcdss.2009.2.503.

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295. doi: 10.1002/mana.201000007.

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012). doi: 10.1142/S0218202512500352.

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004). doi: 10.1007/978-3-662-05358-4.

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467.

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1. doi: 10.1016/S0898-1221(97)00072-2.

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983). doi: 10.1007/978-1-4612-5561-1.

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337. doi: 10.1016/j.crma.2007.01.010.

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316.

[24]

P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535. doi: 10.1121/1.1918525.

[1]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[2]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[3]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[4]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[5]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[6]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[7]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[8]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[9]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[10]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[11]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[12]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[13]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[14]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[15]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[16]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[17]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[18]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure & Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

[19]

Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331

[20]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]