2014, 34(11): 4589-4615. doi: 10.3934/dcds.2014.34.4589

Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations

1. 

Laboratoire de Mathématiques et d'Informatique (LMI), INSA de Rouen, Avenue de l'Université, 76 801 Saint Etienne du Rouvray Cedex, France

2. 

Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417, Zielona Góra, Poland

Received  January 2013 Revised  March 2014 Published  May 2014

The present work is the first one of two papers, in which we analyse systems of higher order variational equations associated to natural Hamiltonian systems with homogeneous potential of degree $k\in\mathbb{Z}\setminus \{-1,0,1\}$. Our attempt is to give necessary conditions for complete integrability which can be deduced in a framework of differential Galois theory. We show that the higher variational equations $\mathrm{VE}_p$ of order $p\geq 2$, although complicated, have a very particular algebraic structure. More precisely, we show that if $\mathrm{VE}_1$ has virtually Abelian differential Galois group (DGG), then $\mathrm{VE}_{p}$ are solvable for an arbitrary $p>1$. We proved this inductively using what we call the second level integrals. Then we formulate the necessary and sufficient conditions in terms of these second level integrals for $\mathrm{VE}_{p}$ to be virtually Abelian. We apply the above conditions to potentials of degree $k=\pm 2$ considering their $\mathrm{VE}_p$ with $p>1$ along Darboux points. For $k= 2$, $\mathrm{VE}_1$ does not give any obstruction to the integrability. We show that under certain non-resonance condition, the only degree two integrable potential is the multidimensional harmonic oscillator. In contrast, for degree $k=-2$ potentials, all the $\mathrm{VE}_{p}$ along Darboux points are virtually Abelian.
Citation: Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589
References:
[1]

M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés 8, (2001).

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, in Mechanics Day (Waterloo, (1992), 5.

[3]

G. Casale, Morales-Ramis theorems via Malgrange pseudogroup,, Annales de l'Institut Fourier, 59 (2009), 2593. doi: 10.5802/aif.2501.

[4]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839. doi: 10.5802/aif.2510.

[5]

N. V. Grigorenko, Abelian extensions in Picard-Vessiot theory,, Mat. Zametki, 17 (1975), 113.

[6]

J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).

[7]

E. R. Kolchin, Algebraic groups and algebraic dependence,, Amer. J. Math., 90 (1968), 1151. doi: 10.2307/2373294.

[8]

A. J. Maciejewski and M. Przybylska, Differential Galois theory and integrability,, Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357. doi: 10.1142/S0219887809004272.

[9]

J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide,, in Differential algebra, 509 (2010), 143. doi: 10.1090/conm/509/09980.

[10]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. Éc. Norm. Supér, 40 (2007), 845. doi: 10.1016/j.ansens.2007.09.002.

[11]

M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2003).

show all references

References:
[1]

M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés 8, (2001).

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, in Mechanics Day (Waterloo, (1992), 5.

[3]

G. Casale, Morales-Ramis theorems via Malgrange pseudogroup,, Annales de l'Institut Fourier, 59 (2009), 2593. doi: 10.5802/aif.2501.

[4]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839. doi: 10.5802/aif.2510.

[5]

N. V. Grigorenko, Abelian extensions in Picard-Vessiot theory,, Mat. Zametki, 17 (1975), 113.

[6]

J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).

[7]

E. R. Kolchin, Algebraic groups and algebraic dependence,, Amer. J. Math., 90 (1968), 1151. doi: 10.2307/2373294.

[8]

A. J. Maciejewski and M. Przybylska, Differential Galois theory and integrability,, Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357. doi: 10.1142/S0219887809004272.

[9]

J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide,, in Differential algebra, 509 (2010), 143. doi: 10.1090/conm/509/09980.

[10]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. Éc. Norm. Supér, 40 (2007), 845. doi: 10.1016/j.ansens.2007.09.002.

[11]

M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2003).

[1]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1969-2009. doi: 10.3934/dcds.2015.35.1969

[2]

Regina Martínez, Carles Simó. Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 1-24. doi: 10.3934/dcds.2011.29.1

[3]

Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707

[4]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[5]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[6]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[7]

R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203

[8]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[9]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[10]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[11]

Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657

[12]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

[13]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[14]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[15]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[16]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[17]

Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995

[18]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[19]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[20]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Communications on Pure & Applied Analysis, 2011, 10 (1) : 269-286. doi: 10.3934/cpaa.2011.10.269

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]