# American Institute of Mathematical Sciences

November  2014, 34(11): 4647-4669. doi: 10.3934/dcds.2014.34.4647

## Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity

 1 Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2 Université Bordeaux 1, Institut de Mathématiques de Bordeaux, F-33405 Talence Cedex, France

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper, we investigate the time decay behavior to weak solution of 2D incompressible inhomogeneous Navier-Stokes equations. Granted the decay estimates, we gain a global well-posed result of these solutions.
Citation: J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647
##### References:
 [1] H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations,, Comm. Pure. Appl. Math., 64 (2011), 832.  doi: 10.1002/cpa.20351.  Google Scholar [2] H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften 343, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar [3] J. Bergh and J. L$\ddoto$fstr$\ddoto$m, Interpolation Spaces. An Introduction,, Grundlehren der mathematischen Wissenschaften 223, (1976).   Google Scholar [4] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated-Compactness and Hardy spaces,, J. Math. Pure Appl., 72 (1993), 247.   Google Scholar [5] R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.   Google Scholar [6] B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rat. Mech. Anal., 137 (1997), 135.  doi: 10.1007/s002050050025.  Google Scholar [7] G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math., 30 (2009), 607.  doi: 10.1007/s11401-009-0027-3.  Google Scholar [8] J. Huang, Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations,, submit., ().   Google Scholar [9] J. Huang, M. Paicu and P. Zhang, Global solutions to 2-D incompressible inhomogeneous Navier-Stokes system with general velocity,, J. Math. Pures Appl., 100 (2013), 806.  doi: 10.1016/j.matpur.2013.03.003.  Google Scholar [10] O. A. Ladyženskaja and V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids., (Russian) Boundary value problems of mathematical physics, 52 (1975), 52.   Google Scholar [11] P. L. Lions, Mathematical Topics in Fluid Mechanics., Vol.1 of Oxford Lecture Series in Mathematics and its Applications 3. New York, (1996).   Google Scholar [12] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar [13] M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.  doi: 10.1007/s002050050128.  Google Scholar [14] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbbR^n$,, J. London Math. Soc., 35 (1987), 303.  doi: 10.1112/jlms/s2-35.2.303.  Google Scholar

show all references

##### References:
 [1] H. Abidi, G. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations,, Comm. Pure. Appl. Math., 64 (2011), 832.  doi: 10.1002/cpa.20351.  Google Scholar [2] H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften 343, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar [3] J. Bergh and J. L$\ddoto$fstr$\ddoto$m, Interpolation Spaces. An Introduction,, Grundlehren der mathematischen Wissenschaften 223, (1976).   Google Scholar [4] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated-Compactness and Hardy spaces,, J. Math. Pure Appl., 72 (1993), 247.   Google Scholar [5] R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,, Adv. Differential Equations, 9 (2004), 353.   Google Scholar [6] B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids,, Arch. Rat. Mech. Anal., 137 (1997), 135.  doi: 10.1007/s002050050025.  Google Scholar [7] G. Gui and P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity,, Chin. Ann. Math., 30 (2009), 607.  doi: 10.1007/s11401-009-0027-3.  Google Scholar [8] J. Huang, Decay estimate for global solutions of 2-D inhomogeneous Navier-Stokes equations,, submit., ().   Google Scholar [9] J. Huang, M. Paicu and P. Zhang, Global solutions to 2-D incompressible inhomogeneous Navier-Stokes system with general velocity,, J. Math. Pures Appl., 100 (2013), 806.  doi: 10.1016/j.matpur.2013.03.003.  Google Scholar [10] O. A. Ladyženskaja and V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids., (Russian) Boundary value problems of mathematical physics, 52 (1975), 52.   Google Scholar [11] P. L. Lions, Mathematical Topics in Fluid Mechanics., Vol.1 of Oxford Lecture Series in Mathematics and its Applications 3. New York, (1996).   Google Scholar [12] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar [13] M. Vishik, Hydrodynamics in Besov spaces,, Arch. Rat. Mech. Anal., 145 (1998), 197.  doi: 10.1007/s002050050128.  Google Scholar [14] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbbR^n$,, J. London Math. Soc., 35 (1987), 303.  doi: 10.1112/jlms/s2-35.2.303.  Google Scholar
 [1] Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323 [2] Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517 [3] Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052 [4] Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101 [5] Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 [6] Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 [7] Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361 [8] Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020142 [9] Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 [10] Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 [11] Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 [12] Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 [13] C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 [14] Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 [15] Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 [16] Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269 [17] Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020163 [18] Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537 [19] Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277 [20] Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

2018 Impact Factor: 1.143