    2014, 34(11): 4719-4733. doi: 10.3934/dcds.2014.34.4719

## On some Liouville type theorems for the compressible Navier-Stokes equations

 1 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T1Z2, Canada 2 Department of Mathematical and Statistical Sciences, University of Alberta, 632 CAB, Edmonton, AB T6G 2G1

Received  February 2013 Revised  February 2014 Published  May 2014

We prove several Liouville type results for stationary solutions of the $d$-dimensional compressible Navier-Stokes equations. In particular, we show that when the dimension $d ≥ 4$, the natural requirements $\rho \in L^{\infty} ( \mathbb{R}^d )$, $v \in \dot{H}^1 (\mathbb{R}^d)$ suffice to guarantee that the solution is trivial. For dimensions $d=2,3$, we assume the extra condition $v \in L^{\frac{3d}{d-1}}(\mathbb R^d)$. This improves a recent result of Chae .
Citation: Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719
##### References:
  D. Chae, Remarks on the liouville type results for the compressible navier-stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345. doi: 10.1088/0951-7715/25/5/1345.  E. Feireisl, Dynamics of Viscous Compressible Fluids,, volume 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004). J. Jost, Partial Differential Equations,, Graduate Texts in Mathematics, (2007). doi: 10.1007/978-0-387-49319-0.  P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1998). A. Novotny and I. Stra, Introduction to the Mathematical Theory of Compressible Flow,, volume 27 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004). show all references

##### References:
  D. Chae, Remarks on the liouville type results for the compressible navier-stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345. doi: 10.1088/0951-7715/25/5/1345.  E. Feireisl, Dynamics of Viscous Compressible Fluids,, volume 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004). J. Jost, Partial Differential Equations,, Graduate Texts in Mathematics, (2007). doi: 10.1007/978-0-387-49319-0.  P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1998). A. Novotny and I. Stra, Introduction to the Mathematical Theory of Compressible Flow,, volume 27 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2004). Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602  Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277  Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675  Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595  Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085  Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609  Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907  Dongho Chae, Shangkun Weng. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5267-5285. doi: 10.3934/dcds.2016031  Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673  Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409  Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004  Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373  Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201  Tao Wang, Huijiang Zhao, Qingyang Zou. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinetic & Related Models, 2013, 6 (3) : 649-670. doi: 10.3934/krm.2013.6.649  Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991  Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785  Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041  Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107  Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75  Ping Chen, Ting Zhang. A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure & Applied Analysis, 2008, 7 (4) : 987-1016. doi: 10.3934/cpaa.2008.7.987

2017 Impact Factor: 1.179

## Metrics

• PDF downloads (11)
• HTML views (0)
• Cited by (1)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]