• Previous Article
    Infinitely many radial solutions to elliptic systems involving critical exponents
  • DCDS Home
  • This Issue
  • Next Article
    The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body
2014, 34(2): 477-509. doi: 10.3934/dcds.2014.34.477

Variational discretization for rotating stratified fluids

1. 

Applied Geometry Lab, Computing+Mathematical Sciences, Caltech, 1200 E. California Blvd, Pasadena, CA 91125,, United States

2. 

Computational and Mathematical Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305-2004, United States

3. 

CNRS/LMD, École Normale Supérieure, Paris,, France

4. 

LMD, École Normale Supérieure, UPMC, Paris, France

Received  March 2013 Revised  April 2013 Published  August 2013

In this paper we develop and test a structure-preserving discretization scheme for rotating and/or stratified fluid dynamics. The numerical scheme is based on a finite dimensional approximation of the group of volume preserving diffeomorphisms recently proposed in [25,9] and is derived via a discrete version of the Euler-Poincaré variational formulation of rotating stratified fluids. The resulting variational integrator allows for a discrete version of Kelvin circulation theorem, is applicable to irregular meshes and, being symplectic, exhibits excellent long term energy behavior. We then report a series of preliminary tests for rotating stratified flows in configurations that are symmetric with respect to translation along one of the spatial directions. In the benchmark processes of hydrostatic and/or geostrophic adjustments, these tests show that the slow and fast component of the flow are correctly reproduced. The harder test of inertial instability is in full agreement with the common knowledge of the process of development and saturation of this instability, while preserving energy nearly perfectly and respecting conservation laws.
Citation: Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477
References:
[1]

R. V. Abramov and A. J. Majda, Statistically relevant conserved quantities for truncated quasigeostrophic flow,, Proc. Natl. Acad. Sci. USA., 100 (2003), 3841. doi: 10.1073/pnas.0230451100.

[2]

V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319. doi: 10.5802/aif.233.

[3]

V. I. Arnold, "Mathematical Methods in Classical Mechanics,", Springer, (1974).

[4]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications,, Acta Numerica, 15 (2006), 1. doi: 10.1017/S0962492906210018.

[5]

V. I. Arnold and B. A. Khesin, "Topological Methods in Hydrodynamics,", Applied Mathematical Sciences, 125 (1998).

[6]

A. Bossavit, "Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements,", Electromagnetism, (1998).

[7]

N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin Integrators on Lie Groups. Part I: Introduction and Structure-Preserving Properties,, Foundations of Computational Mathematics, 9 (2009), 197. doi: 10.1007/s10208-008-9030-4.

[8]

M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling,, in, 38 (2008), 287. doi: 10.1007/978-3-7643-8621-4_16.

[9]

E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories,, Physica D, 240 (2011), 1724. doi: 10.1016/j.physd.2011.07.011.

[10]

I. Gjaja and D. D. Holm, Self-consistent Hamiltonian dynamics of wave mean-flow interaction for a rotating stratified incompressible fluid,, Physica D, 98 (1996), 343. doi: 10.1016/0167-2789(96)00104-2.

[11]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Second edition, 31 (2006).

[12]

F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,, Physics of Fluids, 8 (1965), 2182. doi: 10.1063/1.1761178.

[13]

D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. in Math., 137 (1998), 1. doi: 10.1006/aima.1998.1721.

[14]

D. D. Holm and V. Zeitlin, Hamilton's principle for quasigeostrophic motion,, Phys. Fluids, 10 (1998), 800. doi: 10.1063/1.869623.

[15]

J. R. Holton, "An Introduction to Dynamic Meteorology,", Third edition, (1992). doi: 10.1119/1.1987371.

[16]

B. J. Hoskins, M. E. McIntyre and A. W. Robertson, On the use and significance of isentropic potential vorticity maps,, Q. J. R. Met. Soc., 111 (1985), 877. doi: 10.1002/qj.49711147002.

[17]

H. Lamb, "Hydrodynamics,", Ch. 309, (1932).

[18]

J. Lighthill, "Waves in Fluids,", Ch. 4, (1978).

[19]

B. Kadar, I. Szunyogh and Q. J. Devenyi, On the origin of model errors,, J. Hung. Meteor. Soc., 101 (1998), 71.

[20]

R. C. Kloosterziel, P. Orlandi and G. F. Carnevale, Saturation of inertial instability in rotating planar shear flows,, J. Fluid Mech., 583 (2007), 413. doi: 10.1017/S0022112007006593.

[21]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", Second edition, 17 (1999).

[22]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357. doi: 10.1017/S096249290100006X.

[23]

J. Marshall and F. Molteni, Toward a dynamical understanding of planetary-scale flow regimes,, J. Atmos. Sci., 50 (1993), 1792.

[24]

S. Medvedev and V. Zeitlin, Parallels between stratification and rotation in hydrodynamics, and between both of them and external magnetic field in magnetohydrodynamics, with applications to nonlinear waves,, in, 28 (2010), 27. doi: 10.1007/978-94-007-0360-5_3.

[25]

D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun, Structure-preserving discretization of incompressible fluids,, Physica D, 240 (2011), 443. doi: 10.1016/j.physd.2010.10.012.

[26]

J. Pedlosky, "Geophysical Fluid Dynamics,", Springer, (1979).

[27]

R. Plougonven and V. Zeiltin, Nonlinear development of inertial instability in a barotropic shear,, Physics of Fluids, 21 (2009). doi: 10.1063/1.3242283.

[28]

R. Salmon, "Lectures on Geophysical Fluid Dynamics,", Oxford University Press, (1998).

[29]

V. Zeitlin, G. M. Reznik and M. Ben Jelloul, Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations,, J. Fluid Mech., 491 (2003), 207. doi: 10.1017/S0022112003005457.

show all references

References:
[1]

R. V. Abramov and A. J. Majda, Statistically relevant conserved quantities for truncated quasigeostrophic flow,, Proc. Natl. Acad. Sci. USA., 100 (2003), 3841. doi: 10.1073/pnas.0230451100.

[2]

V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319. doi: 10.5802/aif.233.

[3]

V. I. Arnold, "Mathematical Methods in Classical Mechanics,", Springer, (1974).

[4]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications,, Acta Numerica, 15 (2006), 1. doi: 10.1017/S0962492906210018.

[5]

V. I. Arnold and B. A. Khesin, "Topological Methods in Hydrodynamics,", Applied Mathematical Sciences, 125 (1998).

[6]

A. Bossavit, "Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements,", Electromagnetism, (1998).

[7]

N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin Integrators on Lie Groups. Part I: Introduction and Structure-Preserving Properties,, Foundations of Computational Mathematics, 9 (2009), 197. doi: 10.1007/s10208-008-9030-4.

[8]

M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling,, in, 38 (2008), 287. doi: 10.1007/978-3-7643-8621-4_16.

[9]

E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories,, Physica D, 240 (2011), 1724. doi: 10.1016/j.physd.2011.07.011.

[10]

I. Gjaja and D. D. Holm, Self-consistent Hamiltonian dynamics of wave mean-flow interaction for a rotating stratified incompressible fluid,, Physica D, 98 (1996), 343. doi: 10.1016/0167-2789(96)00104-2.

[11]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Second edition, 31 (2006).

[12]

F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,, Physics of Fluids, 8 (1965), 2182. doi: 10.1063/1.1761178.

[13]

D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. in Math., 137 (1998), 1. doi: 10.1006/aima.1998.1721.

[14]

D. D. Holm and V. Zeitlin, Hamilton's principle for quasigeostrophic motion,, Phys. Fluids, 10 (1998), 800. doi: 10.1063/1.869623.

[15]

J. R. Holton, "An Introduction to Dynamic Meteorology,", Third edition, (1992). doi: 10.1119/1.1987371.

[16]

B. J. Hoskins, M. E. McIntyre and A. W. Robertson, On the use and significance of isentropic potential vorticity maps,, Q. J. R. Met. Soc., 111 (1985), 877. doi: 10.1002/qj.49711147002.

[17]

H. Lamb, "Hydrodynamics,", Ch. 309, (1932).

[18]

J. Lighthill, "Waves in Fluids,", Ch. 4, (1978).

[19]

B. Kadar, I. Szunyogh and Q. J. Devenyi, On the origin of model errors,, J. Hung. Meteor. Soc., 101 (1998), 71.

[20]

R. C. Kloosterziel, P. Orlandi and G. F. Carnevale, Saturation of inertial instability in rotating planar shear flows,, J. Fluid Mech., 583 (2007), 413. doi: 10.1017/S0022112007006593.

[21]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", Second edition, 17 (1999).

[22]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357. doi: 10.1017/S096249290100006X.

[23]

J. Marshall and F. Molteni, Toward a dynamical understanding of planetary-scale flow regimes,, J. Atmos. Sci., 50 (1993), 1792.

[24]

S. Medvedev and V. Zeitlin, Parallels between stratification and rotation in hydrodynamics, and between both of them and external magnetic field in magnetohydrodynamics, with applications to nonlinear waves,, in, 28 (2010), 27. doi: 10.1007/978-94-007-0360-5_3.

[25]

D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun, Structure-preserving discretization of incompressible fluids,, Physica D, 240 (2011), 443. doi: 10.1016/j.physd.2010.10.012.

[26]

J. Pedlosky, "Geophysical Fluid Dynamics,", Springer, (1979).

[27]

R. Plougonven and V. Zeiltin, Nonlinear development of inertial instability in a barotropic shear,, Physics of Fluids, 21 (2009). doi: 10.1063/1.3242283.

[28]

R. Salmon, "Lectures on Geophysical Fluid Dynamics,", Oxford University Press, (1998).

[29]

V. Zeitlin, G. M. Reznik and M. Ben Jelloul, Nonlinear theory of geostrophic adjustment. Part 2. Two-layer and continuously stratified primitive equations,, J. Fluid Mech., 491 (2003), 207. doi: 10.1017/S0022112003005457.

[1]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[2]

Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063

[3]

Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261

[4]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[5]

Bruce Hughes. Geometric topology of stratified spaces. Electronic Research Announcements, 1996, 2: 73-81.

[6]

Andrei Cozma, Christoph Reisinger. Exponential integrability properties of Euler discretization schemes for the Cox--Ingersoll--Ross process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3359-3377. doi: 10.3934/dcdsb.2016101

[7]

Peter Constantin. Transport in rotating fluids. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 165-176. doi: 10.3934/dcds.2004.10.165

[8]

D. Bresch, B. Desjardins, D. Gérard-Varet. Rotating fluids in a cylinder. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 47-82. doi: 10.3934/dcds.2004.11.47

[9]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[10]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[11]

Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic & Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373

[12]

Chjan C. Lim, Junping Shi. The role of higher vorticity moments in a variational formulation of Barotropic flows on a rotating sphere. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 717-740. doi: 10.3934/dcdsb.2009.11.717

[13]

Zoltán Horváth, Yunfei Song, Tamás Terlaky. Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2997-3013. doi: 10.3934/dcds.2015.35.2997

[14]

Van-Sang Ngo, Stefano Scrobogna. Dispersive effects of weakly compressible and fast rotating inviscid fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 749-789. doi: 10.3934/dcds.2018033

[15]

Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497

[16]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic & Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[17]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

[18]

Nicolas Crouseilles, Giacomo Dimarco, Mohammed Lemou. Asymptotic preserving and time diminishing schemes for rarefied gas dynamic. Kinetic & Related Models, 2017, 10 (3) : 643-668. doi: 10.3934/krm.2017026

[19]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[20]

Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]