Citation: |
[1] |
H. Abels, A. Manoussos and G. Noskov, Proper actions and proper invariant metrics, J. London Math. Soc. (2), 83 (2011), 619-636.doi: 10.1112/jlms/jdq091. |
[2] |
M. Baake and D. Lenz, Deformation of Delone dynamical systems and pure point diffraction, J. Fourier Anal. Appl., 11 (2005), 125-150.doi: 10.1007/s00041-005-4021-1. |
[3] |
M. Baake, M. Schlottmann and P. D. Jarvis, Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability, J. Phys. A, 24 (1991), 4637-4654.doi: 10.1088/0305-4470/24/19/025. |
[4] |
J. Bellissard, R. Benedetti and J.-M. Gambaudo, Spaces of tilings, finite telescopic approximations and gap-labeling, Comm. Math. Phys., 261 (2006), 1-41.doi: 10.1007/s00220-005-1445-z. |
[5] |
E. Bombieri and J. E. Taylor, Quasicrystals, tilings, and algebraic number theory: Some preliminary connections, in "The Legacy of Sonya Kovalevskaya" (Cambridge, Mass., and Amherst, Mass., 1985), Contemp. Math., 64, Amer. Math. Soc., Providence, RI, (1987), 241-264.doi: 10.1090/conm/064/881466. |
[6] |
J. H. Conway and C. Radin, Quaquaversal tilings and rotations, Invent. Math., 132 (1998), 179-188.doi: 10.1007/s002220050221. |
[7] |
C. Corduneanu, "Almost Periodic Functions", Wiley Interscience, New York, 1968. |
[8] |
M. I. Cortez and B. Solomyak, Invariant measures for non-primitive tiling substitutions, J. Anal. Math., 115 (2011), 293-342.doi: 10.1007/s11854-011-0031-x. |
[9] |
D. Damanik and D. Lenz, Linear repetitivity. I. Uniform subadditive ergodic theorems and applications, Discrete Comput. Geom., 26 (2001), 411-428.doi: 10.1007/s00454-001-0033-z. |
[10] |
L. Danzer, Quasiperiodicity: local and global aspects, in "Group theoretical methods in physics" (Moscow, 1990), Lecture Notes in Phys., 382, Springer, Berlin (1991), 561-572.doi: 10.1007/3-540-54040-7_164. |
[11] |
D. Frettlöh, Substitution tilings with statistical circular symmetry, Eur. J. Comb., 29 (2008), 1881-1893.doi: 10.1016/j.ejc.2008.01.006. |
[12] |
D. Frettlöh and B. Sing, Computing modular coincidences for substitution tilings and point sets, Discrete Comput. Geom., 37 (2007), 381-407.doi: 10.1007/s00454-006-1280-9. |
[13] |
N. P. Frank and E. A. Robinson, Generalized $\beta$-expansions, substitution tilings, and local finiteness, Trans. Amer. Math. Soc., 360 (2008), 1163-1177.doi: 10.1090/S0002-9947-07-04527-8. |
[14] |
N. P. Frank and L. Sadun, Topology of some tiling spaces without finite local complexity, Discrete Contin. Dyn. Syst., 23 (2009), 847-865.doi: 10.3934/dcds.2009.23.847. |
[15] |
N. P. Frank and L. Sadun, Fusion: A general framework for hierarchical tilings of $\mathbb R^\mathsfd$, preprint, arXiv:1101.4930. |
[16] |
N. P. Frank and L. Sadun, Fusion tilings with infinite local complexity, preprint, arXiv:1201.3911. |
[17] |
W. H. Gottschalk, Orbit-closure decompositions and almost periodic properties, Bull. Amer. Math. Soc., 50 (1944), 915-919.doi: 10.1090/S0002-9904-1944-08262-1. |
[18] |
B. Grünbaum and G. C. Shephard, "Tilings and Patterns. An Introduction," A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New York, 1989. |
[19] |
J. C. Lagarias and P. A. B. Pleasants, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831-867.doi: 10.1017/S0143385702001566. |
[20] |
J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. H. Poincaré, 3 (2002), 1003-1018.doi: 10.1007/s00023-002-8646-1. |
[21] |
D. Lenz and C. Richard, Pure point diffraction and cut and project schemes for measures: The smooth case, Math. Z., 256 (2007), 347-378.doi: 10.1007/s00209-006-0077-0. |
[22] |
W. F. Lunnon and P. A. B. Pleasants, Quasicrystallographic tilings, J. Math. Pures et Appl. (9), 66 (1987), 217-263. |
[23] |
W. Miller, Jr., "Symmetry Groups and their Applications," Pure and Applied Mathematics, Vol. 50, Academic Press, New York-London, 1972. |
[24] |
M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math., 60 (1938), 815-866.doi: 10.2307/2371264. |
[25] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.doi: 10.2307/2371431. |
[26] |
P. Müller and C. Richard, Ergodic properties of randomly coloured point sets, Canad. J. Math., 65 (2013), 349-402.doi: 10.4153/CJM-2012-009-7. |
[27] |
C. Radin, Space tilings and substitutions, Geom. Dedicata, 55 (1995), 257-264.doi: 10.1007/BF01266317. |
[28] |
C. Radin and M. Wolff, Space tilings and local isomorphism, Geom. Dedicata, 42 (1992), 355-360.doi: 10.1007/BF02414073. |
[29] |
E. A. Robinson, Jr., The dynamical properties of Penrose tilings, Trans. Amer. Math. Soc., 348 (1996), 4447-4464.doi: 10.1090/S0002-9947-96-01640-6. |
[30] |
E. A. Robinson, Jr., Symbolic dynamics and tilings of $\mathbb R^\mathsfd$, in "Symbolic Dynamics and its Applications" Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, (2004), 81-119. |
[31] |
D. J. Rudolph, Markov tilings of $\mathbb R^\mathsfn$ and representations of $\mathbb R^\mathsfn$ actions, in " Measure and Measurable Dynamics" (Rochester, NY, 1987), Contemp. Math., 94, Amer. Math. Soc., Providence, RI, (1989), 271-290.doi: 10.1090/conm/094/1012996. |
[32] |
L. Sadun, Some generalizations of the pinwheel tiling, Discrete Comput. Geom., 20 (1998), 79-110.doi: 10.1007/PL00009379. |
[33] |
B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., 20 (1998), 265-279.doi: 10.1007/PL00009386. |
[34] |
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17 (1997), 695-738; Corrections to: "Dynamics of self-similar tilings," Ergodic Theory Dynam. Systems, 19 (1999), 1685.doi: 10.1017/S0143385797084988. |
[35] |
W. Thurston, "Groups, Tilings, and Finite State Automata," AMS Colloquium Lecture Notes, Boulder, 1989. |
[36] |
P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[37] |
T. Yokonuma, Discrete sets and associated dynamical systems in a non-commutative setting, Canad. Math. Bull., 48 (2005), 302-316.doi: 10.4153/CMB-2005-028-8. |