August  2014, 34(8): i-iii. doi: 10.3934/dcds.2014.34.8i

Introduction

1. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna

Published  January 2014

We survey the content of the present special issue devoted to nonlinear water waves.
Citation: Adrian Constantin. Introduction. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : i-iii. doi: 10.3934/dcds.2014.34.8i
References:
[1]

B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction,, Princeton University Press, (2003). Google Scholar

[2]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements,, J. Fluid Mech., 726 (2013), 547. Google Scholar

[3]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed,, J. Fluid Mech., 714 (2013), 463. Google Scholar

[4]

A. Constantin, Edge waves along a sloping beach,, J. Phys. A, 34 (2001), 9723. Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. Google Scholar

[6]

A. Constantin, Particle trajectories in extreme Stokes waves,, IMA J. Appl. Math., 77 (2012), 293. Google Scholar

[7]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements,, J. Fluid Mech., 699 (2012), 376. Google Scholar

[8]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591. Google Scholar

[9]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533. Google Scholar

[10]

E. Dancer, Bifurcation theory for analytic operators,, Proc. London Math. Soc., 26 (1973), 359. Google Scholar

[11]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile,, Ann. Phys., 2 (1809), 412. Google Scholar

[12]

D. Henry and R. Ivanov, One-dimensional weakly nonlinear model equations for Rossby waves,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3025. doi: 10.3934/dcds.2014.34.3025. Google Scholar

[13]

H.-C. Hsu, Recovering surface profiles of solitary waves on a uniform stream from pressure measurements,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3035. doi: 10.3934/dcds.2014.34.3035. Google Scholar

[14]

D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3045. doi: 10.3934/dcds.2014.34.3045. Google Scholar

[15]

M. Kovalyov, On the nature of large and rogue waves,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3061. doi: 10.3934/dcds.2014.34.3061. Google Scholar

[16]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3095. doi: 10.3934/dcds.2014.34.3095. Google Scholar

[17]

C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3109. doi: 10.3934/dcds.2014.34.3109. Google Scholar

[18]

B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3125. doi: 10.3934/dcds.2014.34.3125. Google Scholar

[19]

A. Nachbin and R. Ribeiro-Junior, A boundary integral formulation for particle trajectories in Stokes waves,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3135. doi: 10.3934/dcds.2014.34.3135. Google Scholar

[20]

H. Okamoto, T. Sakajo and M. Wunsch, Steady-states and traveling-wave solutions of the generalized Constantin-Lax-Majda equation,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3155. doi: 10.3934/dcds.2014.34.3155. Google Scholar

[21]

K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements,, SIAM J. Appl. Math., 72 (2012), 897. Google Scholar

[22]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487. Google Scholar

[23]

M. Stiassnie and R. Stuhlmeier, Progressive waves on a blunt interface,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3171. doi: 10.3934/dcds.2014.34.3171. Google Scholar

[24]

R. Stuhlmeier, Internal Gerstner waves on a sloping bed,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3183. doi: 10.3934/dcds.2014.34.3183. Google Scholar

[25]

J. F. Toland, Energy-minimising parallel flows with prescribed vorticity distribution,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3193. doi: 10.3934/dcds.2014.34.3193. Google Scholar

[26]

J. F. Toland, Non-existence of global energy minimisers in Stokes waves problems,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3211. doi: 10.3934/dcds.2014.34.3211. Google Scholar

[27]

V. Vasan and K. Oliveras, Pressure beneath a traveling wave with constant vorticity,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3219. doi: 10.3934/dcds.2014.34.3219. Google Scholar

[28]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Local bifurcation,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3241. doi: 10.3934/dcds.2014.34.3241. Google Scholar

[29]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Global bifurcation,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3287. doi: 10.3934/dcds.2014.34.3287. Google Scholar

show all references

References:
[1]

B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction,, Princeton University Press, (2003). Google Scholar

[2]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements,, J. Fluid Mech., 726 (2013), 547. Google Scholar

[3]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed,, J. Fluid Mech., 714 (2013), 463. Google Scholar

[4]

A. Constantin, Edge waves along a sloping beach,, J. Phys. A, 34 (2001), 9723. Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. Google Scholar

[6]

A. Constantin, Particle trajectories in extreme Stokes waves,, IMA J. Appl. Math., 77 (2012), 293. Google Scholar

[7]

A. Constantin, On the recovery of solitary wave profiles from pressure measurements,, J. Fluid Mech., 699 (2012), 376. Google Scholar

[8]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity,, Duke Math. J., 140 (2007), 591. Google Scholar

[9]

A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533. Google Scholar

[10]

E. Dancer, Bifurcation theory for analytic operators,, Proc. London Math. Soc., 26 (1973), 359. Google Scholar

[11]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile,, Ann. Phys., 2 (1809), 412. Google Scholar

[12]

D. Henry and R. Ivanov, One-dimensional weakly nonlinear model equations for Rossby waves,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3025. doi: 10.3934/dcds.2014.34.3025. Google Scholar

[13]

H.-C. Hsu, Recovering surface profiles of solitary waves on a uniform stream from pressure measurements,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3035. doi: 10.3934/dcds.2014.34.3035. Google Scholar

[14]

D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3045. doi: 10.3934/dcds.2014.34.3045. Google Scholar

[15]

M. Kovalyov, On the nature of large and rogue waves,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3061. doi: 10.3934/dcds.2014.34.3061. Google Scholar

[16]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3095. doi: 10.3934/dcds.2014.34.3095. Google Scholar

[17]

C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3109. doi: 10.3934/dcds.2014.34.3109. Google Scholar

[18]

B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3125. doi: 10.3934/dcds.2014.34.3125. Google Scholar

[19]

A. Nachbin and R. Ribeiro-Junior, A boundary integral formulation for particle trajectories in Stokes waves,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3135. doi: 10.3934/dcds.2014.34.3135. Google Scholar

[20]

H. Okamoto, T. Sakajo and M. Wunsch, Steady-states and traveling-wave solutions of the generalized Constantin-Lax-Majda equation,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3155. doi: 10.3934/dcds.2014.34.3155. Google Scholar

[21]

K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements,, SIAM J. Appl. Math., 72 (2012), 897. Google Scholar

[22]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487. Google Scholar

[23]

M. Stiassnie and R. Stuhlmeier, Progressive waves on a blunt interface,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3171. doi: 10.3934/dcds.2014.34.3171. Google Scholar

[24]

R. Stuhlmeier, Internal Gerstner waves on a sloping bed,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3183. doi: 10.3934/dcds.2014.34.3183. Google Scholar

[25]

J. F. Toland, Energy-minimising parallel flows with prescribed vorticity distribution,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3193. doi: 10.3934/dcds.2014.34.3193. Google Scholar

[26]

J. F. Toland, Non-existence of global energy minimisers in Stokes waves problems,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3211. doi: 10.3934/dcds.2014.34.3211. Google Scholar

[27]

V. Vasan and K. Oliveras, Pressure beneath a traveling wave with constant vorticity,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3219. doi: 10.3934/dcds.2014.34.3219. Google Scholar

[28]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Local bifurcation,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3241. doi: 10.3934/dcds.2014.34.3241. Google Scholar

[29]

S. Walsh, Steady stratified periodic gravity waves with surface tension: Global bifurcation,, Discr. Cont. Dyn. Syst. A, 34 (2014), 3287. doi: 10.3934/dcds.2014.34.3287. Google Scholar

[1]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[2]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[3]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[4]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[5]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[6]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287

[7]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[8]

Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927

[9]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[10]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[11]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[12]

Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997

[13]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[14]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[15]

Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[17]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[18]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

[19]

Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1

[20]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]