2015, 35(4): 1447-1468. doi: 10.3934/dcds.2015.35.1447

On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions

1. 

Instituto Matemático Interdisciplinar and Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de las Ciencias 3, 28040-Madrid, Spain

2. 

Instituto de Matemática Interdiciplinar, Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de las Ciencias, 3, 28040 Madrid

Received  June 2013 Revised  October 2013 Published  November 2014

This paper deals with several qualitative properties of solutions of some stationary equations associated to the Monge--Ampère operator on the set of convex functions which are not necessarily understood in a strict sense. Mainly, we focus our attention on the occurrence of a free boundary (separating the region where the solution $u$ is locally a hyperplane, thus, the Hessian $D^{2}u$ is vanishing, from the rest of the domain). In particular, our results apply to suitable formulations of the Gauss curvature flow and of the worn stones problems intensively studied in the literature.
Citation: Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447
References:
[1]

A. D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it,, Uzen. Zap. Leningrad. Gos. Univ., 6 (1939), 3.

[2]

L. Álvarez, On the behavior of the free boundary of some nonhomogeneous elliptic problems,, Appl. Anal., 36 (1990), 131.

[3]

L. Álvarez and J. I. Díaz, On the retention of the interfaces in some elliptic and parabolic nonlinear problems,, Discrete Contin. Dyn. Syst., 25 (2009), 1. doi: 10.3934/dcds.2009.25.1.

[4]

L. Ambrosio, Lecture Notes on Optimal Transport Problems,, Mathematical Aspects of Evolving Interfaces, 1812 (2003), 1. doi: 10.1007/978-3-540-39189-0_1.

[5]

A. M. Ampère, Mémoire contenant l'application de la théorie,, J. l'École Polytechnique, (1820).

[6]

G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term,, Comm. in P.D.E., 26 (2001), 2323. doi: 10.1081/PDE-100107824.

[7]

B. Brandolini and J. I. Díaz, work, in progress., ().

[8]

B. Brandolini and C. Trombetti, Comparison results for Hessian equations via symmetrization,, J. Eur. Math. Soc. (JEMS), 9 (2007), 561. doi: 10.4171/JEMS/88.

[9]

H. Brezis and L. Nirenberg, Removable singularities for nonlinear elliptic equations,, Topol. Methods Nonlinear Anal., 9 (1997), 201.

[10]

L. Caffarelli, Some regularity properties of solutions of the Monge-Ampère equation,, Comm. Pure Appl. Math., 44 (1991), 965. doi: 10.1002/cpa.3160440809.

[11]

L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces,, Comm. Pure Appl. Math., 41 (1988), 47. doi: 10.1002/cpa.3160410105.

[12]

L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problemas,, American Mathematical Society, (2005).

[13]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[14]

M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces,, Amer. J. Math., 93 (1971), 265. doi: 10.2307/2373376.

[15]

P. Daskalopoulos and K. Lee, Fully degenerate Monge-Ampère equations,, J. Differential. Equations, 253 (2012), 1665. doi: 10.1016/j.jde.2012.06.006.

[16]

G. Díaz, Some properties of second order of degenerate second order P.D.E. in non-divergence form,, Appl. Anal., 20 (1985), 309. doi: 10.1080/00036818508839576.

[17]

G. Díaz, The Influence of the Geometry in the Large Solution of Hessian Equations Perturbed with a Superlinear Zeroth Order Term,, work in progress., ().

[18]

G. Díaz, The Liouville Theorem on Hessian Equations Perturbed with a Superlinear Zeroth Order Term,, work in progress ., ().

[19]

G. Díaz and J. I. Díaz, On some free boundary problems for stationary fully nonlinear equations involving Hessian functions: application to optimal multi-antennas,, to appear., ().

[20]

G. Díaz and J. I. Díaz, Parabolic MongeAmpre equations giving rise to a free boundary: the worn stone model,, to appear., ().

[21]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. 1 Elliptic Equations,, Res. Notes Math, 106 (1985).

[22]

J. I. Díaz, T. Mingazzini and A. M. Ramos, On an optimal control problem involving the location of a free boundary,, Proceedings of the XII Congreso de Ecuaciones Diferenciales y Aplicaciones/Congreso de Matemática Aplicada (Palma de Mallorca), (2011), 5.

[23]

W. J. Firey, Shapes of worn stones,, Mathematika, 21 (1974), 1. doi: 10.1112/S0025579300005714.

[24]

W. Gangbo and R. J. Mccann, The geometry of optimal transportation,, Acta Math., 177 (1996), 113. doi: 10.1007/BF02392620.

[25]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0.

[26]

E. Goursat, Leçons sur l'Integration des Équations aux Derivées Partielles du Second Order à Deux Variables Indepéndantes,, Herman, (1896).

[27]

P. Guan, N. S. Trudinger and X. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations,, Acta Math., 182 (1999), 87. doi: 10.1007/BF02392824.

[28]

C. E. Gutiérrez, The Monge-Ampère Equation,, Birkhauser, (2001). doi: 10.1007/978-1-4612-0195-3.

[29]

R. Hamilton, Worn stones with at sides; in a tribute to Ilya Bakelman,, Discourses Math. Appl., 3 (1993), 69.

[30]

P.-L. Lions, Sur les equations de Monge-Ampère I, II,, Manuscripta Math., 41 (1983), 1. doi: 10.1007/BF00282327.

[31]

G. Monge, Sur le Calcul Intégral Des Équations Aux Differences Partielles,, Mémoires de l'Académie des Sciences, (1784).

[32]

L. Nirenberg, Monge-Ampère Equations and Some Associated Problems in Geometry,, in Proccedings of the International Congress of Mathematics, (1974).

[33]

P. Pucci and J. Serrin, The Maximum Principle,, Birkhäuser, (2007).

[34]

G. Talenti, Some estimates of solutions to Monge-Ampère type equations in dimension two,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 8 (1981), 183.

[35]

N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, Arch. Ration. Mech. Anal., 111 (1990), 153. doi: 10.1007/BF00375406.

[36]

N. S. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications,, in Handbook of Geometric Analysis, (2008), 467.

[37]

J. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations,, Indiana Univ. Math. J., 39 (1990), 355. doi: 10.1512/iumj.1990.39.39020.

[38]

C. Villani, Optimal Transport: Old and New,, Springer Verlag (Grundlehren der mathematischen Wissenschaften), (2008). doi: 10.1007/978-3-540-71050-9.

[39]

J. L. Vázquez, A strong Maximum Principle for some quasilinear elliptic equations,, Appl Math Optim., 12 (1984), 191. doi: 10.1007/BF01449041.

show all references

References:
[1]

A. D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it,, Uzen. Zap. Leningrad. Gos. Univ., 6 (1939), 3.

[2]

L. Álvarez, On the behavior of the free boundary of some nonhomogeneous elliptic problems,, Appl. Anal., 36 (1990), 131.

[3]

L. Álvarez and J. I. Díaz, On the retention of the interfaces in some elliptic and parabolic nonlinear problems,, Discrete Contin. Dyn. Syst., 25 (2009), 1. doi: 10.3934/dcds.2009.25.1.

[4]

L. Ambrosio, Lecture Notes on Optimal Transport Problems,, Mathematical Aspects of Evolving Interfaces, 1812 (2003), 1. doi: 10.1007/978-3-540-39189-0_1.

[5]

A. M. Ampère, Mémoire contenant l'application de la théorie,, J. l'École Polytechnique, (1820).

[6]

G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term,, Comm. in P.D.E., 26 (2001), 2323. doi: 10.1081/PDE-100107824.

[7]

B. Brandolini and J. I. Díaz, work, in progress., ().

[8]

B. Brandolini and C. Trombetti, Comparison results for Hessian equations via symmetrization,, J. Eur. Math. Soc. (JEMS), 9 (2007), 561. doi: 10.4171/JEMS/88.

[9]

H. Brezis and L. Nirenberg, Removable singularities for nonlinear elliptic equations,, Topol. Methods Nonlinear Anal., 9 (1997), 201.

[10]

L. Caffarelli, Some regularity properties of solutions of the Monge-Ampère equation,, Comm. Pure Appl. Math., 44 (1991), 965. doi: 10.1002/cpa.3160440809.

[11]

L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces,, Comm. Pure Appl. Math., 41 (1988), 47. doi: 10.1002/cpa.3160410105.

[12]

L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problemas,, American Mathematical Society, (2005).

[13]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[14]

M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces,, Amer. J. Math., 93 (1971), 265. doi: 10.2307/2373376.

[15]

P. Daskalopoulos and K. Lee, Fully degenerate Monge-Ampère equations,, J. Differential. Equations, 253 (2012), 1665. doi: 10.1016/j.jde.2012.06.006.

[16]

G. Díaz, Some properties of second order of degenerate second order P.D.E. in non-divergence form,, Appl. Anal., 20 (1985), 309. doi: 10.1080/00036818508839576.

[17]

G. Díaz, The Influence of the Geometry in the Large Solution of Hessian Equations Perturbed with a Superlinear Zeroth Order Term,, work in progress., ().

[18]

G. Díaz, The Liouville Theorem on Hessian Equations Perturbed with a Superlinear Zeroth Order Term,, work in progress ., ().

[19]

G. Díaz and J. I. Díaz, On some free boundary problems for stationary fully nonlinear equations involving Hessian functions: application to optimal multi-antennas,, to appear., ().

[20]

G. Díaz and J. I. Díaz, Parabolic MongeAmpre equations giving rise to a free boundary: the worn stone model,, to appear., ().

[21]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. 1 Elliptic Equations,, Res. Notes Math, 106 (1985).

[22]

J. I. Díaz, T. Mingazzini and A. M. Ramos, On an optimal control problem involving the location of a free boundary,, Proceedings of the XII Congreso de Ecuaciones Diferenciales y Aplicaciones/Congreso de Matemática Aplicada (Palma de Mallorca), (2011), 5.

[23]

W. J. Firey, Shapes of worn stones,, Mathematika, 21 (1974), 1. doi: 10.1112/S0025579300005714.

[24]

W. Gangbo and R. J. Mccann, The geometry of optimal transportation,, Acta Math., 177 (1996), 113. doi: 10.1007/BF02392620.

[25]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0.

[26]

E. Goursat, Leçons sur l'Integration des Équations aux Derivées Partielles du Second Order à Deux Variables Indepéndantes,, Herman, (1896).

[27]

P. Guan, N. S. Trudinger and X. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations,, Acta Math., 182 (1999), 87. doi: 10.1007/BF02392824.

[28]

C. E. Gutiérrez, The Monge-Ampère Equation,, Birkhauser, (2001). doi: 10.1007/978-1-4612-0195-3.

[29]

R. Hamilton, Worn stones with at sides; in a tribute to Ilya Bakelman,, Discourses Math. Appl., 3 (1993), 69.

[30]

P.-L. Lions, Sur les equations de Monge-Ampère I, II,, Manuscripta Math., 41 (1983), 1. doi: 10.1007/BF00282327.

[31]

G. Monge, Sur le Calcul Intégral Des Équations Aux Differences Partielles,, Mémoires de l'Académie des Sciences, (1784).

[32]

L. Nirenberg, Monge-Ampère Equations and Some Associated Problems in Geometry,, in Proccedings of the International Congress of Mathematics, (1974).

[33]

P. Pucci and J. Serrin, The Maximum Principle,, Birkhäuser, (2007).

[34]

G. Talenti, Some estimates of solutions to Monge-Ampère type equations in dimension two,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 8 (1981), 183.

[35]

N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations,, Arch. Ration. Mech. Anal., 111 (1990), 153. doi: 10.1007/BF00375406.

[36]

N. S. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications,, in Handbook of Geometric Analysis, (2008), 467.

[37]

J. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations,, Indiana Univ. Math. J., 39 (1990), 355. doi: 10.1512/iumj.1990.39.39020.

[38]

C. Villani, Optimal Transport: Old and New,, Springer Verlag (Grundlehren der mathematischen Wissenschaften), (2008). doi: 10.1007/978-3-540-71050-9.

[39]

J. L. Vázquez, A strong Maximum Principle for some quasilinear elliptic equations,, Appl Math Optim., 12 (1984), 191. doi: 10.1007/BF01449041.

[1]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[2]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[3]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[4]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[5]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[6]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[7]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[8]

Roberto Paroni, Podio-Guidugli Paolo, Brian Seguin. On the nonlocal curvatures of surfaces with or without boundary. Communications on Pure & Applied Analysis, 2018, 17 (2) : 709-727. doi: 10.3934/cpaa.2018037

[9]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[10]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[11]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[12]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[13]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[14]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[15]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[16]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[17]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[18]

Gregorio Díaz, Jesús Ildefonso Díaz. Parabolic Monge-Ampere equations giving rise to a free boundary: The worn stone model. Conference Publications, 2015, 2015 (special) : 369-378. doi: 10.3934/proc.2015.0369

[19]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[20]

Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]