• Previous Article
    Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics
  • DCDS Home
  • This Issue
  • Next Article
    Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations
2015, 35(1): 155-171. doi: 10.3934/dcds.2015.35.155

Liouville theorem for an integral system on the upper half space

1. 

School of Statistics, Xi'an University of Finance and Economics, Xi'an, Shaanxi, 710100, China

2. 

Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States

Received  January 2014 Revised  June 2014 Published  August 2014

In this paper we establish a Liouville type theorem for an integral system on the upper half space $\mathbb{R}_+^{n}$ \begin{equation*} \begin{cases} u(y)=\int_{\mathbb{R}^{n}_+}\frac{f(v(x))}{|x-y|^{n-\alpha}}dx,&\quad y\in\partial\mathbb{R}^{n}_+,\\ v(x)=\int_{\partial\mathbb{R}^{n}_+}\frac{g(u(y))}{|x-y|^{n-\alpha}}dy,&\quad x\in\mathbb{R}_+^{n}. \end{cases} \end{equation*} This integral system arises from the Euler-Lagrange equation corresponding to Hardy-Littlewood-Sobolev inequality on the upper half space. Under natural structure conditions on $f$ and $g$, we classify positive solutions to the above system basing on the method of moving sphere in integral forms and the Hardy-Littlewood-Sobolev inequality on the upper half space.
Citation: Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155
References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqs., 22 (1997), 1671. doi: 10.1080/03605309708821315.

[2]

L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, J. Math. Anal. Appl., 389 (2012), 1365. doi: 10.1016/j.jmaa.2012.01.015.

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[4]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[5]

W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications,, Comm. Pure and Appl. Anal., 12 (2013), 2497. doi: 10.3934/cpaa.2013.12.2497.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Diff. Eqs., 30 (2005), 59. doi: 10.1081/PDE-200044445.

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[8]

C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent,, Duke Math. J., 78 (1995), 315. doi: 10.1215/S0012-7094-95-07814-4.

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.

[10]

J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions,, Sci. China Math., 54 (2011), 753. doi: 10.1007/s11425-011-4177-x.

[11]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Notices, 2014 (2014). doi: 10.1093/imrn/rnt213.

[12]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. Appl., (1981), 369.

[13]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[14]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Diff. Eqs., 6 (1981), 883. doi: 10.1080/03605308108820196.

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$,, Comm. Partial Differ. Eqs., 33 (2008), 263. doi: 10.1080/03605300701257476.

[16]

F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373. doi: 10.4310/MRL.2007.v14.n3.a2.

[17]

C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. doi: 10.1007/s002220050023.

[18]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.

[19]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. D'Anal. Math., 90 (2003), 27. doi: 10.1007/BF02786551.

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[21]

Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems,, Diff. Integ. Eqs., 12 (1999), 601.

[22]

W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805. doi: 10.1007/s00209-008-0352-3.

[23]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. PDE, 46 (2013), 75. doi: 10.1007/s00526-011-0474-z.

show all references

References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqs., 22 (1997), 1671. doi: 10.1080/03605309708821315.

[2]

L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, J. Math. Anal. Appl., 389 (2012), 1365. doi: 10.1016/j.jmaa.2012.01.015.

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[4]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[5]

W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications,, Comm. Pure and Appl. Anal., 12 (2013), 2497. doi: 10.3934/cpaa.2013.12.2497.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Diff. Eqs., 30 (2005), 59. doi: 10.1081/PDE-200044445.

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[8]

C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent,, Duke Math. J., 78 (1995), 315. doi: 10.1215/S0012-7094-95-07814-4.

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.

[10]

J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions,, Sci. China Math., 54 (2011), 753. doi: 10.1007/s11425-011-4177-x.

[11]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Notices, 2014 (2014). doi: 10.1093/imrn/rnt213.

[12]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. Appl., (1981), 369.

[13]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[14]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Diff. Eqs., 6 (1981), 883. doi: 10.1080/03605308108820196.

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$,, Comm. Partial Differ. Eqs., 33 (2008), 263. doi: 10.1080/03605300701257476.

[16]

F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373. doi: 10.4310/MRL.2007.v14.n3.a2.

[17]

C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. doi: 10.1007/s002220050023.

[18]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.

[19]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. D'Anal. Math., 90 (2003), 27. doi: 10.1007/BF02786551.

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[21]

Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems,, Diff. Integ. Eqs., 12 (1999), 601.

[22]

W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805. doi: 10.1007/s00209-008-0352-3.

[23]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. PDE, 46 (2013), 75. doi: 10.1007/s00526-011-0474-z.

[1]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[2]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[3]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[4]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[5]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[6]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[7]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[8]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[9]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[10]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[11]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[12]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[13]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[14]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[15]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[16]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[17]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[18]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[19]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[20]

Xian-gao Liu, Xiaotao Zhang. Liouville theorem for MHD system and its applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2329-2350. doi: 10.3934/cpaa.2018111

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]