2015, 35(5): 1767-1800. doi: 10.3934/dcds.2015.35.1767

On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory

1. 

Department of Mathematics, Universidad del Atlántico and Intelectual.Co, Barranquilla, Colombia

2. 

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Barcelona, Spain, Spain

3. 

Department of Applied Mathematics, Technical University of Madrid, Madrid, Spain

Received  September 2013 Revised  September 2014 Published  December 2014

We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some families of quadratic vector fields, Liénard equations and equations related with special functions such as Hypergeometric and Heun ones. The Poincaré problem for some families is also approached.
Citation: Primitivo B. Acosta-Humánez, J. Tomás Lázaro, Juan J. Morales-Ruiz, Chara Pantazi. On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1767-1800. doi: 10.3934/dcds.2015.35.1767
References:
[1]

P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics,, PhD. Thesis, (2009).

[2]

P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory,, VDM Verlag Dr. Müller, (2010).

[3]

P. B. Acosta-Humánez, La teoría de Morales-Ramis y el algoritmo de Kovacic,, Lecturas Matemáticas, 27 (2006), 21.

[4]

P. B. Acosta-Humánez, Nonautonomous Hamiltonian systems and Morales-Ramis theory I. The case $\ddot x=f(x,t)$,, SIAM Journal on Applied Dynamical Systems, 8 (2009), 279. doi: 10.1137/080730329.

[5]

P. Acosta-Humánez and D. Blázquez-Sanz, Non-integrability of some Hamiltonians with rational potential,, Discrete Continuous Dynam. Systems - B, 10 (2008), 265. doi: 10.3934/dcdsb.2008.10.265.

[6]

P. B. Acosta-Humánez, J. J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation,, Report on Mathematical Physics, 67 (2011), 305. doi: 10.1016/S0034-4877(11)60019-0.

[7]

P. B. Acosta-Humánez and C. Pantazi, Darboux integrals for Schrödinger planar vector fields via Darboux transformations,, SIGMA Symmetry Integrability Geom. Methods Appl., 8 (2012). doi: 10.3842/SIGMA.2012.043.

[8]

P. B. Acosta-Humánez, A. Reyes-Linero and J. Rodríguez-Contreras, Algebraic and qualitative remarks about the family $yy'=(\alpha x^{m+k-1}+\beta x^{m-k-1})y+\gamma x^{2m-2k-1}$,, preprint 2014., (2014).

[9]

F. Baldassarri, On algebraic solutions of Lamé's differential equation,, J. Diff. Equat., 41 (1981), 44. doi: 10.1016/0022-0396(81)90052-8.

[10]

D. Blázquez-Sanz, Differential Galois Theory and Lie-Vessiot Systems,, VDM Verlag Dr. Müller, (2008).

[11]

D. Blázquez-Sanz and J.-J. Morales-Ruiz, Differential Galois theory of algebraic Lie-Vessiot systems,, in Differential algebra, 509 (2010), 1. doi: 10.1090/conm/509.

[12]

D. Blázquez-Sanz and Ch. Pantazi, A note on the Darboux theory of integrability of non-autonomous polynomial differential systems,, Nonlinearity, 25 (2012), 2615. doi: 10.1088/0951-7715/25/9/2615.

[13]

M. Carnicer, The Poincaré problem in the nondicritical case,, Ann. Math., 140 (1994), 289. doi: 10.2307/2118601.

[14]

G. Casale, Feuilletages singuliers de codimension un, groupoide de Galois et intègrales premieres,, Ann. Inst. Fourier, 56 (2006), 735. doi: 10.5802/aif.2198.

[15]

D. Cerveau and A. Lins Neto, Holomorphic foliations in $\mathbbC \mathbbP (2)$ having an invariant algebraic curve,, Ann. Inst. Fourier, 41 (1991), 883. doi: 10.5802/aif.1278.

[16]

E. S. Cheb-Terrab, Solutions for the general, confluent and biconfluent Heun equations and their connection with Abel equations,, J. Phys. A, 37 (2004), 9923. doi: 10.1088/0305-4470/37/42/007.

[17]

E. S. Cheb-Terrab and A. D. Roche, An Abel ordinary differential equation class generalizing known integrable classes,, European J. Appl. Math., 14 (2003), 217. doi: 10.1017/S0956792503005114.

[18]

T. S. Chihara, An Introduction to Orthogonal Polynomials,, Gordon and Breach Science Publishers, (1978).

[19]

C. Christopher, Invariant algebraic curves and conditions for a center,, Proc. Roy.Soc. Edinburgh Sect. A, 124 (1994), 1209. doi: 10.1017/S0308210500030213.

[20]

C. Christopher, J. Llibre, Ch. Pantazi and S. Walcher, Darboux integrating factors: Inverse problems,, J. Diff. Equat., 250 (2011), 1. doi: 10.1016/j.jde.2010.10.013.

[21]

C. Christopher, J. Llibre, Ch. Pantazi and S. Walcher, Inverse problems for multiple invariant curves,, Proc. Roy.Soc. Edinburgh Sect. A, 137 (2007), 1197. doi: 10.1017/S0308210506000400.

[22]

C. Christopher, J. Llibre, Ch. Pantazi and S. Walcher, Inverse problems for invariant algebraic curves: Explicit computations,, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 287. doi: 10.1017/S0308210507001175.

[23]

C. Christopher, J. Llibre, Ch. Pantazi and X. Zhang, Darboux integrability and invariant algebraic curves for planar polynomial systems,, J. Phys. A, 35 (2002), 2457. doi: 10.1088/0305-4470/35/10/310.

[24]

C. Christopher, J. Llibre and J. V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields,, Pacific J. Math., 229 (2007), 63. doi: 10.2140/pjm.2007.229.63.

[25]

G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges),, Bull. Sci. math. 2ème série, 2 (1878), 60.

[26]

V. A. Dobrovol'skii, N. V. Lokot and J.-M. Strelcyn, Mikhail Nikolaevich Lagutinkskii (1871-1915): un mathématicien méconnu,, Historia Math., 25 (1998), 245. doi: 10.1006/hmat.1998.2194.

[27]

A. Duval and M. Loday-Richaud, Kovacic's algorithm and its application to some families of special functions,, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 211. doi: 10.1007/BF01268661.

[28]

G. H. Halphen, Traité des Fonctions Elliptiques, Vol. I, II,, Gauthier-Villars, (1888).

[29]

I. A. García, H. Giacomini and J. Giné, Generalized nonlinear superposition principles for polynomial planar vector fields,, J. Lie Theory, 15 (2005), 89.

[30]

H. Giacomini , J. Giné and M. Grau, Integrability of planar polynomial differential systems through linear differential equations,, Rocky Mountain J. Math., 36 (2006), 457. doi: 10.1216/rmjm/1181069462.

[31]

E. L. Ince, Ordinary Differential Equations,, Dover Publications, (1944).

[32]

J. P. Jouanolou, Equations de Pfaff Algébriques,, Lectures Notes in Mathematics, 708 (1979). doi: 10.1007/BFb0063393.

[33]

I. Kaplansky, An Introduction to Differential Algebra,, Hermann, (1957).

[34]

T. Kimura, On Riemann's equations which are solvable by quadratures,, Funkcialaj Ekvacioj, 12 (1969), 269.

[35]

J. Kovacic, An algorithm for solving second order linear homogeneous differential equations,, J. Symb. Comput., 2 (1986), 3. doi: 10.1016/S0747-7171(86)80010-4.

[36]

E. Kolchin, Differential Algebra and Algebraic Groups,, Academic Press, 54 (1973).

[37]

A. Lins Neto, Construction of singular holomorphic vector fields and foliations in dimension two,, J. Differential Geometry, 26 (1987), 1.

[38]

J. Llibre and Ch. Pantazi, Polynomial differential systems having a given Darbouxian first integral,, Bull. Sci. Math, 128 (2004), 775. doi: 10.1016/j.bulsci.2004.04.001.

[39]

J. Llibre and Ch. Pantazi, Darboux theory of integrability for a class of nonautonomous vector fields,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3205450.

[40]

J. Llibre, Ch. Pantazi and S. Walcher, Morphisms and inverse problems for Darboux integrating factors,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 1291. doi: 10.1017/S0308210511001430.

[41]

J. Llibre and C. Valls, Analytic integrability of quadratic-linear polynomial differential systems,, Ergod. Th. & Dynam. Sys., 31 (2011), 245. doi: 10.1017/S0143385709000868.

[42]

J. Llibre and X. Zhang, Darboux theory of integrability in $\C^n$ taking into account the multiplicity,, J. Diff. Equat., 246 (2009), 541. doi: 10.1016/j.jde.2008.07.020.

[43]

J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in $\mathbb R^n$ taking into account the multiplicity at infinity,, Bull. Sci. Math., 133 (2009), 765. doi: 10.1016/j.bulsci.2009.06.002.

[44]

B. Malgrange, Le groupoide de Galois d'un feuilletage,, in Essays on geometry and related topics, 38 (2001), 465.

[45]

B. Malgrange, On nonlinear differential Galois theory,, Chinese Ann. Math. Ser. B, 23 (2002), 219. doi: 10.1142/S0252959902000213.

[46]

J. Martinet and J. P. Ramis, Theorie de Galois differentielle et resummation,, in Computer Algebra and Differential Equations, (1990), 117.

[47]

J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems,, Progress in Mathematics, 179 (1999). doi: 10.1007/978-3-0348-8718-2.

[48]

Ch. Pantazi, Inverse Problems of the Darboux Theory of Integrability for Planar Polynomial Differential Systems,, PhD. thesis, (2004).

[49]

J. V. Pereira, Vector fields, invariant varieties and linear systems,, Annales de l'institut Fourier, 51 (2001), 1385. doi: 10.5802/aif.1858.

[50]

J. V. Pereira, On the Poincaré problem for foliations of general type,, Math. Ann. , 323 (2002), 217. doi: 10.1007/s002080100277.

[51]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Second Edition,, Chapman and Hall, (2003).

[52]

E. G. C. Poole, Introduction to the Theory of Linear Differential Equations,, Dover Publications, (1960).

[53]

M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations,, Trans. Amer. Math. Soc., 279 (1983), 215. doi: 10.1090/S0002-9947-1983-0704611-X.

[54]

M. van der Put and M. Singer, Galois Theory of Linear Differential Equations,, Grundlehren der Mathematischen Wissenschaften, 328 (2003). doi: 10.1007/978-3-642-55750-7.

[55]

M. F. Singer, Liouvillian first integrals of differential equations,, Trans. Amer. Math. Soc., 333 (1992), 673. doi: 10.1090/S0002-9947-1992-1062869-X.

[56]

M. F. Singer, Liouvillian solutions of $n$th order homogeneous linear differential equations,, Amer. J. Math., 103 (1981), 661. doi: 10.2307/2374045.

[57]

F. Ulmer and J. A. Weil., Note on Kovacic's algorithm,, J. Symb. Comp., 22 (1996), 179. doi: 10.1006/jsco.1996.0047.

[58]

R. Vidunas, Differential equations of order two with one singular point,, J. Symb. Comp., 28 (1999), 495. doi: 10.1006/jsco.1999.0312.

[59]

J.-A. Weil, Constantes et Polynômes de Darboux en Algèbre Differentielle: Applications Aux Systèmes Différentiels Linéaires,, PhD. Thesis, (1995).

[60]

J. A. Weil, Recent algorithms for solving second-order differential equations,, in Algorithms Seminar 2001-2002, (2003), 2001.

[61]

E. T. Whittaker and E. T. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions,, Cambridge Univ. Press, (1962).

[62]

H. Zołądek, Polynomial Riccati equations with algebraic solutions,, in Differential Galois theory (Bedlewo, 58 (2002), 219. doi: 10.4064/bc58-0-17.

show all references

References:
[1]

P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics,, PhD. Thesis, (2009).

[2]

P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory,, VDM Verlag Dr. Müller, (2010).

[3]

P. B. Acosta-Humánez, La teoría de Morales-Ramis y el algoritmo de Kovacic,, Lecturas Matemáticas, 27 (2006), 21.

[4]

P. B. Acosta-Humánez, Nonautonomous Hamiltonian systems and Morales-Ramis theory I. The case $\ddot x=f(x,t)$,, SIAM Journal on Applied Dynamical Systems, 8 (2009), 279. doi: 10.1137/080730329.

[5]

P. Acosta-Humánez and D. Blázquez-Sanz, Non-integrability of some Hamiltonians with rational potential,, Discrete Continuous Dynam. Systems - B, 10 (2008), 265. doi: 10.3934/dcdsb.2008.10.265.

[6]

P. B. Acosta-Humánez, J. J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation,, Report on Mathematical Physics, 67 (2011), 305. doi: 10.1016/S0034-4877(11)60019-0.

[7]

P. B. Acosta-Humánez and C. Pantazi, Darboux integrals for Schrödinger planar vector fields via Darboux transformations,, SIGMA Symmetry Integrability Geom. Methods Appl., 8 (2012). doi: 10.3842/SIGMA.2012.043.

[8]

P. B. Acosta-Humánez, A. Reyes-Linero and J. Rodríguez-Contreras, Algebraic and qualitative remarks about the family $yy'=(\alpha x^{m+k-1}+\beta x^{m-k-1})y+\gamma x^{2m-2k-1}$,, preprint 2014., (2014).

[9]

F. Baldassarri, On algebraic solutions of Lamé's differential equation,, J. Diff. Equat., 41 (1981), 44. doi: 10.1016/0022-0396(81)90052-8.

[10]

D. Blázquez-Sanz, Differential Galois Theory and Lie-Vessiot Systems,, VDM Verlag Dr. Müller, (2008).

[11]

D. Blázquez-Sanz and J.-J. Morales-Ruiz, Differential Galois theory of algebraic Lie-Vessiot systems,, in Differential algebra, 509 (2010), 1. doi: 10.1090/conm/509.

[12]

D. Blázquez-Sanz and Ch. Pantazi, A note on the Darboux theory of integrability of non-autonomous polynomial differential systems,, Nonlinearity, 25 (2012), 2615. doi: 10.1088/0951-7715/25/9/2615.

[13]

M. Carnicer, The Poincaré problem in the nondicritical case,, Ann. Math., 140 (1994), 289. doi: 10.2307/2118601.

[14]

G. Casale, Feuilletages singuliers de codimension un, groupoide de Galois et intègrales premieres,, Ann. Inst. Fourier, 56 (2006), 735. doi: 10.5802/aif.2198.

[15]

D. Cerveau and A. Lins Neto, Holomorphic foliations in $\mathbbC \mathbbP (2)$ having an invariant algebraic curve,, Ann. Inst. Fourier, 41 (1991), 883. doi: 10.5802/aif.1278.

[16]

E. S. Cheb-Terrab, Solutions for the general, confluent and biconfluent Heun equations and their connection with Abel equations,, J. Phys. A, 37 (2004), 9923. doi: 10.1088/0305-4470/37/42/007.

[17]

E. S. Cheb-Terrab and A. D. Roche, An Abel ordinary differential equation class generalizing known integrable classes,, European J. Appl. Math., 14 (2003), 217. doi: 10.1017/S0956792503005114.

[18]

T. S. Chihara, An Introduction to Orthogonal Polynomials,, Gordon and Breach Science Publishers, (1978).

[19]

C. Christopher, Invariant algebraic curves and conditions for a center,, Proc. Roy.Soc. Edinburgh Sect. A, 124 (1994), 1209. doi: 10.1017/S0308210500030213.

[20]

C. Christopher, J. Llibre, Ch. Pantazi and S. Walcher, Darboux integrating factors: Inverse problems,, J. Diff. Equat., 250 (2011), 1. doi: 10.1016/j.jde.2010.10.013.

[21]

C. Christopher, J. Llibre, Ch. Pantazi and S. Walcher, Inverse problems for multiple invariant curves,, Proc. Roy.Soc. Edinburgh Sect. A, 137 (2007), 1197. doi: 10.1017/S0308210506000400.

[22]

C. Christopher, J. Llibre, Ch. Pantazi and S. Walcher, Inverse problems for invariant algebraic curves: Explicit computations,, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 287. doi: 10.1017/S0308210507001175.

[23]

C. Christopher, J. Llibre, Ch. Pantazi and X. Zhang, Darboux integrability and invariant algebraic curves for planar polynomial systems,, J. Phys. A, 35 (2002), 2457. doi: 10.1088/0305-4470/35/10/310.

[24]

C. Christopher, J. Llibre and J. V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields,, Pacific J. Math., 229 (2007), 63. doi: 10.2140/pjm.2007.229.63.

[25]

G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges),, Bull. Sci. math. 2ème série, 2 (1878), 60.

[26]

V. A. Dobrovol'skii, N. V. Lokot and J.-M. Strelcyn, Mikhail Nikolaevich Lagutinkskii (1871-1915): un mathématicien méconnu,, Historia Math., 25 (1998), 245. doi: 10.1006/hmat.1998.2194.

[27]

A. Duval and M. Loday-Richaud, Kovacic's algorithm and its application to some families of special functions,, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 211. doi: 10.1007/BF01268661.

[28]

G. H. Halphen, Traité des Fonctions Elliptiques, Vol. I, II,, Gauthier-Villars, (1888).

[29]

I. A. García, H. Giacomini and J. Giné, Generalized nonlinear superposition principles for polynomial planar vector fields,, J. Lie Theory, 15 (2005), 89.

[30]

H. Giacomini , J. Giné and M. Grau, Integrability of planar polynomial differential systems through linear differential equations,, Rocky Mountain J. Math., 36 (2006), 457. doi: 10.1216/rmjm/1181069462.

[31]

E. L. Ince, Ordinary Differential Equations,, Dover Publications, (1944).

[32]

J. P. Jouanolou, Equations de Pfaff Algébriques,, Lectures Notes in Mathematics, 708 (1979). doi: 10.1007/BFb0063393.

[33]

I. Kaplansky, An Introduction to Differential Algebra,, Hermann, (1957).

[34]

T. Kimura, On Riemann's equations which are solvable by quadratures,, Funkcialaj Ekvacioj, 12 (1969), 269.

[35]

J. Kovacic, An algorithm for solving second order linear homogeneous differential equations,, J. Symb. Comput., 2 (1986), 3. doi: 10.1016/S0747-7171(86)80010-4.

[36]

E. Kolchin, Differential Algebra and Algebraic Groups,, Academic Press, 54 (1973).

[37]

A. Lins Neto, Construction of singular holomorphic vector fields and foliations in dimension two,, J. Differential Geometry, 26 (1987), 1.

[38]

J. Llibre and Ch. Pantazi, Polynomial differential systems having a given Darbouxian first integral,, Bull. Sci. Math, 128 (2004), 775. doi: 10.1016/j.bulsci.2004.04.001.

[39]

J. Llibre and Ch. Pantazi, Darboux theory of integrability for a class of nonautonomous vector fields,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3205450.

[40]

J. Llibre, Ch. Pantazi and S. Walcher, Morphisms and inverse problems for Darboux integrating factors,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 1291. doi: 10.1017/S0308210511001430.

[41]

J. Llibre and C. Valls, Analytic integrability of quadratic-linear polynomial differential systems,, Ergod. Th. & Dynam. Sys., 31 (2011), 245. doi: 10.1017/S0143385709000868.

[42]

J. Llibre and X. Zhang, Darboux theory of integrability in $\C^n$ taking into account the multiplicity,, J. Diff. Equat., 246 (2009), 541. doi: 10.1016/j.jde.2008.07.020.

[43]

J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in $\mathbb R^n$ taking into account the multiplicity at infinity,, Bull. Sci. Math., 133 (2009), 765. doi: 10.1016/j.bulsci.2009.06.002.

[44]

B. Malgrange, Le groupoide de Galois d'un feuilletage,, in Essays on geometry and related topics, 38 (2001), 465.

[45]

B. Malgrange, On nonlinear differential Galois theory,, Chinese Ann. Math. Ser. B, 23 (2002), 219. doi: 10.1142/S0252959902000213.

[46]

J. Martinet and J. P. Ramis, Theorie de Galois differentielle et resummation,, in Computer Algebra and Differential Equations, (1990), 117.

[47]

J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems,, Progress in Mathematics, 179 (1999). doi: 10.1007/978-3-0348-8718-2.

[48]

Ch. Pantazi, Inverse Problems of the Darboux Theory of Integrability for Planar Polynomial Differential Systems,, PhD. thesis, (2004).

[49]

J. V. Pereira, Vector fields, invariant varieties and linear systems,, Annales de l'institut Fourier, 51 (2001), 1385. doi: 10.5802/aif.1858.

[50]

J. V. Pereira, On the Poincaré problem for foliations of general type,, Math. Ann. , 323 (2002), 217. doi: 10.1007/s002080100277.

[51]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Second Edition,, Chapman and Hall, (2003).

[52]

E. G. C. Poole, Introduction to the Theory of Linear Differential Equations,, Dover Publications, (1960).

[53]

M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations,, Trans. Amer. Math. Soc., 279 (1983), 215. doi: 10.1090/S0002-9947-1983-0704611-X.

[54]

M. van der Put and M. Singer, Galois Theory of Linear Differential Equations,, Grundlehren der Mathematischen Wissenschaften, 328 (2003). doi: 10.1007/978-3-642-55750-7.

[55]

M. F. Singer, Liouvillian first integrals of differential equations,, Trans. Amer. Math. Soc., 333 (1992), 673. doi: 10.1090/S0002-9947-1992-1062869-X.

[56]

M. F. Singer, Liouvillian solutions of $n$th order homogeneous linear differential equations,, Amer. J. Math., 103 (1981), 661. doi: 10.2307/2374045.

[57]

F. Ulmer and J. A. Weil., Note on Kovacic's algorithm,, J. Symb. Comp., 22 (1996), 179. doi: 10.1006/jsco.1996.0047.

[58]

R. Vidunas, Differential equations of order two with one singular point,, J. Symb. Comp., 28 (1999), 495. doi: 10.1006/jsco.1999.0312.

[59]

J.-A. Weil, Constantes et Polynômes de Darboux en Algèbre Differentielle: Applications Aux Systèmes Différentiels Linéaires,, PhD. Thesis, (1995).

[60]

J. A. Weil, Recent algorithms for solving second-order differential equations,, in Algorithms Seminar 2001-2002, (2003), 2001.

[61]

E. T. Whittaker and E. T. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions,, Cambridge Univ. Press, (1962).

[62]

H. Zołądek, Polynomial Riccati equations with algebraic solutions,, in Differential Galois theory (Bedlewo, 58 (2002), 219. doi: 10.4064/bc58-0-17.

[1]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[2]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[3]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[4]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[5]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[6]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[7]

Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065

[8]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[9]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[10]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[11]

Björn Birnir, Nils Svanstedt. Existence theory and strong attractors for the Rayleigh-Bénard problem with a large aspect ratio. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 53-74. doi: 10.3934/dcds.2004.10.53

[12]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[13]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[14]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[15]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[16]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[17]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[18]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[19]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[20]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (3)

[Back to Top]