• Previous Article
    Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation
  • DCDS Home
  • This Issue
  • Next Article
    Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior
2015, 35(1): 247-281. doi: 10.3934/dcds.2015.35.247

From compact semi-toric systems to Hamiltonian $S^1$-spaces

1. 

Section de Mathématiques, EPFL, SB MATHGEOM CAG, Station 8, 1015 Lausanne, Switzerland

2. 

CAMGSD, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, 1049-001, Portugal

3. 

Instituto de Matemática, Universidade Federal Fluminense, Rua Mário Santos Braga, 24020-240 Niteroi, RJ, Brazil

Received  December 2013 Revised  March 2014 Published  August 2014

We show how any labeled convex polygon associated to a compact semi-toric system, as defined by Vũ ngọc, determines Karshon's labeled directed graph which classifies the underlying Hamiltonian $S^1$-space up to isomorphism. Then we characterize adaptable compact semi-toric systems, i.e. those whose underlying Hamiltonian $S^1$-action can be extended to an effective Hamiltonian $\mathbb{T}^2$-action, as those which have at least one associated convex polygon which satisfies the Delzant condition.
Citation: Sonja Hohloch, Silvia Sabatini, Daniele Sepe. From compact semi-toric systems to Hamiltonian $S^1$-spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 247-281. doi: 10.3934/dcds.2015.35.247
References:
[1]

M. F. Atiyah, Convexity and commuting hamiltonians,, Bull. London Math. Soc., 14 (1982), 1. doi: 10.1112/blms/14.1.1.

[2]

O. Babelon and B. Doucot, Higher index focus-focus singularities in the Jaynes-Cummings-Gaudin model: symplectic invariants and monodromy,, preprint, (). doi: 10.1016/j.geomphys.2014.07.011.

[3]

A. V. Bolsinov and A. A. Oshemkov, Singularities of integrable Hamiltonian systems,, in Topological Methods in the Theory of Integrable Systems, (2006), 1.

[4]

M. Chaperon, Quelques outils de la théorie des actions différentiables,, in Third Schnepfenried Geometry Conference, (1982), 107.

[5]

T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, (French) [Periodic Hamiltonians and convex images of the momentum mapping],, Bull. Soc. Math. France, 116 (1988), 315.

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687. doi: 10.1002/cpa.3160330602.

[7]

J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space,, Invent. Math., 69 (1982), 259. doi: 10.1007/BF01399506.

[8]

L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals,, Ph.D thesis, (1984).

[9]

L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case,, Comment. Math. Helv., 65 (1990), 4. doi: 10.1007/BF02566590.

[10]

A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics,, Translated from the Russian by M. V. Tsaplina., (1988). doi: 10.1007/978-94-009-3069-8.

[11]

V. Guillemin and S. Sternberg, Convexity properties of the moment mapping,, Invent. Math., 67 (1982), 491. doi: 10.1007/BF01398933.

[12]

Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds,, Mem. Amer. Math. Soc., 672 (1999). doi: 10.1090/memo/0672.

[13]

Y. Karshon, L. Kessler and M. Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions,, J. Symplectic Geom., 5 (2007), 139. doi: 10.4310/JSG.2007.v5.n2.a1.

[14]

Y. Karshon and S. Tolman, Centered complexity one Hamiltonian torus actions,, Trans. Amer. Math. Soc., 353 (2001), 4831. doi: 10.1090/S0002-9947-01-02799-4.

[15]

Y. Karshon and S. Tolman, Complete invariants for Hamiltonian torus actions with two dimensional quotients,, J. Symplectic Geom., 2 (2003), 25. doi: 10.4310/JSG.2004.v2.n1.a2.

[16]

Y. Karshon and S. Tolman, Classification of Hamiltonian torus actions with two dimensional quotients,, , (). doi: 10.2140/gt.2014.18.669.

[17]

F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry,, Princeton University Press, (1984). doi: 10.1007/BF01145470.

[18]

N. C. Leung and M. Symington, Almost toric symplectic four-manifolds,, J. Symplectic Geom., 8 (2010), 143. doi: 10.4310/JSG.2010.v8.n2.a2.

[19]

E. Miranda and N. T. Zung, Equivariant normal form for non-degenerate singular orbits of integrable Hamiltonian systems,, Ann. Sci. Éc. Norm. Sup., 37 (2004), 819. doi: 10.1016/j.ansens.2004.10.001.

[20]

Á. Pelayo and S. Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds,, Invent. Math., 177 (2009), 571. doi: 10.1007/s00222-009-0190-x.

[21]

Á. Pelayo and S. Vũ Ngọc, Constructing integrable systems of semitoric type,, Acta Math., 206 (2011), 93. doi: 10.1007/s11511-011-0060-4.

[22]

Á. Pelayo and S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems,, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409. doi: 10.1090/S0273-0979-2011-01338-6.

[23]

D. A. Sadovskií and B. I. Zĥilinskií, Monodromy, diabolic points and angular momentum coupling,, Phys. Lett. A., 256 (1999), 235. doi: 10.1016/S0375-9601(99)00229-7.

[24]

M. Symington, Four dimensions from two in symplectic topology,, in Topology and Geometry of Manifolds (Athens, (2003), 153. doi: 10.1090/pspum/071/2024634.

[25]

S. Vũ Ngọc, On semi-global invariants for focus-focus singularities,, Topology, 42 (2003), 365. doi: 10.1016/S0040-9383(01)00026-X.

[26]

S. Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy,, Adv. Math., 208 (2007), 909. doi: 10.1016/j.aim.2006.04.004.

[27]

J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems,, Amer. J. Math., 58 (1936), 141. doi: 10.2307/2371062.

[28]

N. T. Zung, Symplectic topology of integrable Hamiltonian systems I: Arnol'd-Liouville with singularities,, Compositio Math., 101 (1996), 179.

[29]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. Appl., 7 (1997), 123. doi: 10.1016/S0926-2245(96)00042-3.

[30]

N. T. Zung, Another note on focus-focus singularities,, Lett. Math. Phys., 60 (2002), 87. doi: 10.1023/A:1015761729603.

show all references

References:
[1]

M. F. Atiyah, Convexity and commuting hamiltonians,, Bull. London Math. Soc., 14 (1982), 1. doi: 10.1112/blms/14.1.1.

[2]

O. Babelon and B. Doucot, Higher index focus-focus singularities in the Jaynes-Cummings-Gaudin model: symplectic invariants and monodromy,, preprint, (). doi: 10.1016/j.geomphys.2014.07.011.

[3]

A. V. Bolsinov and A. A. Oshemkov, Singularities of integrable Hamiltonian systems,, in Topological Methods in the Theory of Integrable Systems, (2006), 1.

[4]

M. Chaperon, Quelques outils de la théorie des actions différentiables,, in Third Schnepfenried Geometry Conference, (1982), 107.

[5]

T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, (French) [Periodic Hamiltonians and convex images of the momentum mapping],, Bull. Soc. Math. France, 116 (1988), 315.

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687. doi: 10.1002/cpa.3160330602.

[7]

J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space,, Invent. Math., 69 (1982), 259. doi: 10.1007/BF01399506.

[8]

L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals,, Ph.D thesis, (1984).

[9]

L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case,, Comment. Math. Helv., 65 (1990), 4. doi: 10.1007/BF02566590.

[10]

A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics,, Translated from the Russian by M. V. Tsaplina., (1988). doi: 10.1007/978-94-009-3069-8.

[11]

V. Guillemin and S. Sternberg, Convexity properties of the moment mapping,, Invent. Math., 67 (1982), 491. doi: 10.1007/BF01398933.

[12]

Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds,, Mem. Amer. Math. Soc., 672 (1999). doi: 10.1090/memo/0672.

[13]

Y. Karshon, L. Kessler and M. Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions,, J. Symplectic Geom., 5 (2007), 139. doi: 10.4310/JSG.2007.v5.n2.a1.

[14]

Y. Karshon and S. Tolman, Centered complexity one Hamiltonian torus actions,, Trans. Amer. Math. Soc., 353 (2001), 4831. doi: 10.1090/S0002-9947-01-02799-4.

[15]

Y. Karshon and S. Tolman, Complete invariants for Hamiltonian torus actions with two dimensional quotients,, J. Symplectic Geom., 2 (2003), 25. doi: 10.4310/JSG.2004.v2.n1.a2.

[16]

Y. Karshon and S. Tolman, Classification of Hamiltonian torus actions with two dimensional quotients,, , (). doi: 10.2140/gt.2014.18.669.

[17]

F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry,, Princeton University Press, (1984). doi: 10.1007/BF01145470.

[18]

N. C. Leung and M. Symington, Almost toric symplectic four-manifolds,, J. Symplectic Geom., 8 (2010), 143. doi: 10.4310/JSG.2010.v8.n2.a2.

[19]

E. Miranda and N. T. Zung, Equivariant normal form for non-degenerate singular orbits of integrable Hamiltonian systems,, Ann. Sci. Éc. Norm. Sup., 37 (2004), 819. doi: 10.1016/j.ansens.2004.10.001.

[20]

Á. Pelayo and S. Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds,, Invent. Math., 177 (2009), 571. doi: 10.1007/s00222-009-0190-x.

[21]

Á. Pelayo and S. Vũ Ngọc, Constructing integrable systems of semitoric type,, Acta Math., 206 (2011), 93. doi: 10.1007/s11511-011-0060-4.

[22]

Á. Pelayo and S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems,, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409. doi: 10.1090/S0273-0979-2011-01338-6.

[23]

D. A. Sadovskií and B. I. Zĥilinskií, Monodromy, diabolic points and angular momentum coupling,, Phys. Lett. A., 256 (1999), 235. doi: 10.1016/S0375-9601(99)00229-7.

[24]

M. Symington, Four dimensions from two in symplectic topology,, in Topology and Geometry of Manifolds (Athens, (2003), 153. doi: 10.1090/pspum/071/2024634.

[25]

S. Vũ Ngọc, On semi-global invariants for focus-focus singularities,, Topology, 42 (2003), 365. doi: 10.1016/S0040-9383(01)00026-X.

[26]

S. Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy,, Adv. Math., 208 (2007), 909. doi: 10.1016/j.aim.2006.04.004.

[27]

J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems,, Amer. J. Math., 58 (1936), 141. doi: 10.2307/2371062.

[28]

N. T. Zung, Symplectic topology of integrable Hamiltonian systems I: Arnol'd-Liouville with singularities,, Compositio Math., 101 (1996), 179.

[29]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. Appl., 7 (1997), 123. doi: 10.1016/S0926-2245(96)00042-3.

[30]

N. T. Zung, Another note on focus-focus singularities,, Lett. Math. Phys., 60 (2002), 87. doi: 10.1023/A:1015761729603.

[1]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[2]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[3]

George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215

[4]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[5]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[6]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[7]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[8]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[9]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[10]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[11]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[12]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[13]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[14]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[15]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[16]

Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109

[17]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[18]

Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2/3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681

[19]

Lora Billings, Erik M. Bollt, David Morgan, Ira B. Schwartz. Stochastic global bifurcation in perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 123-132. doi: 10.3934/proc.2003.2003.123

[20]

D. Novikov and S. Yakovenko. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electronic Research Announcements, 1999, 5: 55-65.

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]