2015, 35(1): 283-299. doi: 10.3934/dcds.2015.35.283

Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior

1. 

University of Basel, Department of Mathematics and Computer Science, Rheinsprung 21, 4051 Basel, Switzerland, Switzerland

Received  January 2014 Revised  May 2014 Published  August 2014

We study the solutions $u\in C^\infty(\mathbb{R}^{2m})$ of the problem \begin{equation}\label{P0} (-\Delta)^mu=\bar Qe^{2mu}, \text{ where }\bar Q=\pm (2m-1)!, \quad V :=\int_{\mathbb{R}^{2m}}e^{2mu}dx <\infty,(1) \end{equation} particularly when $m>1$. Problem (1) corresponds to finding conformal metrics $g_u:=e^{2u}|dx|^2$ on $\mathbb{R}^{2m}$ with constant $Q$-curvature $\bar Q$ and finite volume $V$. Extending previous works of Chang-Chen, and Wei-Ye, we show that both the value $V$ and the asymptotic behavior of $u(x)$ as $|x|\to \infty$ can be simultaneously prescribed, under certain restrictions. When $\bar Q= (2m-1)!$ we need to assume $V < vol(S^{2m})$, but surprisingly for $\bar Q=-(2m-1)!$ the volume $V$ can be chosen arbitrarily.
Citation: Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283
References:
[1]

H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations, 16 (1991), 1223. doi: 10.1080/03605309108820797.

[2]

Sun-Yung A. Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275. doi: 10.3934/dcds.2001.7.275.

[3]

Sun-Yung A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91. doi: 10.4310/MRL.1997.v4.n1.a9.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[5]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998).

[6]

E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables,, Russ. Math. Surv., 16 (1961), 91.

[7]

C. R. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. existence,, J. London Math. Soc., 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557.

[8]

T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three,, to appear in Calc. Var. Partial Differential Equations, (2014). doi: 10.1007/s00526-014-0718-9.

[9]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206. doi: 10.1007/s000140050052.

[10]

R. C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783. doi: 10.1002/cpa.3160320604.

[11]

L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant $Q$-curvature,, Rend. Lincei. Mat. Appl., 19 (2008), 279. doi: 10.4171/RLM/525.

[12]

L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307. doi: 10.1007/s00209-008-0419-1.

[13]

L. Martinazzi, Quantization for the prescribed Q-curvature equation on open domains,, Commun. Contemp. Math., 13 (2011), 533. doi: 10.1142/S0219199711004373.

[14]

L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant Q-curvature and large volume,, Ann. Inst. Henri Poincaré (C), 30 (2013), 969. doi: 10.1016/j.anihpc.2012.12.007.

[15]

L. Martinazzi and M. Petrache, Asymptotics and quantization for a mean-field equation of higher order,, Comm. Partial Differential Equations, 35 (2010), 443. doi: 10.1080/03605300903296330.

[16]

F. Robert, Quantization effects for a fourth order equation of exponential growth in dimension four,, Proc. Roy. Soc. Edinburgh Sec. A, 137 (2007), 531. doi: 10.1017/S0308210506000096.

[17]

J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $\mathbbR^4$,, Calc. Var. Partial Differential Equations, 32 (2008), 373. doi: 10.1007/s00526-007-0145-2.

show all references

References:
[1]

H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations, 16 (1991), 1223. doi: 10.1080/03605309108820797.

[2]

Sun-Yung A. Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275. doi: 10.3934/dcds.2001.7.275.

[3]

Sun-Yung A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91. doi: 10.4310/MRL.1997.v4.n1.a9.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[5]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998).

[6]

E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables,, Russ. Math. Surv., 16 (1961), 91.

[7]

C. R. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. existence,, J. London Math. Soc., 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557.

[8]

T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three,, to appear in Calc. Var. Partial Differential Equations, (2014). doi: 10.1007/s00526-014-0718-9.

[9]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206. doi: 10.1007/s000140050052.

[10]

R. C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783. doi: 10.1002/cpa.3160320604.

[11]

L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant $Q$-curvature,, Rend. Lincei. Mat. Appl., 19 (2008), 279. doi: 10.4171/RLM/525.

[12]

L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307. doi: 10.1007/s00209-008-0419-1.

[13]

L. Martinazzi, Quantization for the prescribed Q-curvature equation on open domains,, Commun. Contemp. Math., 13 (2011), 533. doi: 10.1142/S0219199711004373.

[14]

L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant Q-curvature and large volume,, Ann. Inst. Henri Poincaré (C), 30 (2013), 969. doi: 10.1016/j.anihpc.2012.12.007.

[15]

L. Martinazzi and M. Petrache, Asymptotics and quantization for a mean-field equation of higher order,, Comm. Partial Differential Equations, 35 (2010), 443. doi: 10.1080/03605300903296330.

[16]

F. Robert, Quantization effects for a fourth order equation of exponential growth in dimension four,, Proc. Roy. Soc. Edinburgh Sec. A, 137 (2007), 531. doi: 10.1017/S0308210506000096.

[17]

J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $\mathbbR^4$,, Calc. Var. Partial Differential Equations, 32 (2008), 373. doi: 10.1007/s00526-007-0145-2.

[1]

Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43

[2]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[3]

Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239

[4]

Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43

[5]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[6]

Hwai-Chiuan Wang. On domains and their indexes with applications to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 447-467. doi: 10.3934/dcds.2007.19.447

[7]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[8]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[9]

Antonio Greco, Marcello Lucia. Gamma-star-shapedness for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 93-99. doi: 10.3934/cpaa.2005.4.93

[10]

Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233

[11]

Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431

[12]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[13]

David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335

[14]

Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798

[15]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[16]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[17]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

[18]

Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074

[19]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[20]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]