July  2015, 35(7): 2845-2861. doi: 10.3934/dcds.2015.35.2845

Morse decomposition of global attractors with infinite components

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

3. 

Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202 Elche

Received  December 2013 Revised  December 2014 Published  January 2015

In this paper we describe some dynamical properties of a Morse decomposition with a countable number of sets. In particular, we are able to prove that the gradient dynamics on Morse sets together with a separation assumption is equivalent to the existence of an ordered Lyapunov function associated to the Morse sets and also to the existence of a Morse decomposition -that is, the global attractor can be described as an increasing family of local attractors and their associated repellers.
Citation: Tomás Caraballo, Juan C. Jara, José A. Langa, José Valero. Morse decomposition of global attractors with infinite components. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2845-2861. doi: 10.3934/dcds.2015.35.2845
References:
[1]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbation,, Nonlinearity, 24 (2011), 2099. doi: 10.1088/0951-7715/24/7/010. Google Scholar

[2]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Continuity of Lyapunov functions and of energy level for a generalized gradient system,, Topological Methods Nonl. Anal., 39 (2012), 57. Google Scholar

[3]

J. M. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2695. doi: 10.1142/S0218127406016586. Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations,, Studies in Mathematics and its Applications, (1992). Google Scholar

[5]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation,, J. Differential Equations, 246 (2009), 2646. doi: 10.1016/j.jde.2009.01.007. Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Series, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[7]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system,, J. Differential Equations, 236 (2007), 570. doi: 10.1016/j.jde.2007.01.017. Google Scholar

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978). Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Number, (1988). Google Scholar

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981). Google Scholar

[11]

M. Hurley, Chain recurrence, semiflows and gradients,, J. Dyn. Diff. Equations, 7 (1995), 437. doi: 10.1007/BF02219371. Google Scholar

[12]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[13]

D. E. Norton, The fundamental theorem of dynamical systems,, Comment. Math., 36 (1995), 585. Google Scholar

[14]

M. Patrao, Morse decomposition of semiflows on topological spaces,, J. Dyn. Diff. Equations, 19 (2007), 181. doi: 10.1007/s10884-006-9033-2. Google Scholar

[15]

M. Patrao and Luiz A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups,, J. Dyn. Diff. Equations, 19 (2007), 155. doi: 10.1007/s10884-006-9032-3. Google Scholar

[16]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0. Google Scholar

[17]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Universitext, (1987). doi: 10.1007/978-3-642-72833-4. Google Scholar

[18]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002). doi: 10.1007/978-1-4757-5037-9. Google Scholar

[19]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[20]

M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations,, Cambridge University Press, (1992). Google Scholar

show all references

References:
[1]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbation,, Nonlinearity, 24 (2011), 2099. doi: 10.1088/0951-7715/24/7/010. Google Scholar

[2]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Continuity of Lyapunov functions and of energy level for a generalized gradient system,, Topological Methods Nonl. Anal., 39 (2012), 57. Google Scholar

[3]

J. M. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2695. doi: 10.1142/S0218127406016586. Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations,, Studies in Mathematics and its Applications, (1992). Google Scholar

[5]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation,, J. Differential Equations, 246 (2009), 2646. doi: 10.1016/j.jde.2009.01.007. Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Series, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[7]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system,, J. Differential Equations, 236 (2007), 570. doi: 10.1016/j.jde.2007.01.017. Google Scholar

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, (1978). Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Number, (1988). Google Scholar

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981). Google Scholar

[11]

M. Hurley, Chain recurrence, semiflows and gradients,, J. Dyn. Diff. Equations, 7 (1995), 437. doi: 10.1007/BF02219371. Google Scholar

[12]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[13]

D. E. Norton, The fundamental theorem of dynamical systems,, Comment. Math., 36 (1995), 585. Google Scholar

[14]

M. Patrao, Morse decomposition of semiflows on topological spaces,, J. Dyn. Diff. Equations, 19 (2007), 181. doi: 10.1007/s10884-006-9033-2. Google Scholar

[15]

M. Patrao and Luiz A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups,, J. Dyn. Diff. Equations, 19 (2007), 155. doi: 10.1007/s10884-006-9032-3. Google Scholar

[16]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0. Google Scholar

[17]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Universitext, (1987). doi: 10.1007/978-3-642-72833-4. Google Scholar

[18]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002). doi: 10.1007/978-1-4757-5037-9. Google Scholar

[19]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[20]

M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations,, Cambridge University Press, (1992). Google Scholar

[1]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-24. doi: 10.3934/dcdss.2020092

[2]

Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073

[3]

Peter Takáč. Stabilization of positive solutions for analytic gradient-like systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 947-973. doi: 10.3934/dcds.2000.6.947

[4]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[5]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[6]

Lev M. Lerman, Elena V. Gubina. Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-27. doi: 10.3934/dcdss.2020076

[7]

Rafael Ayala, Jose Antonio Vilches, Gregor Jerše, Neža Mramor Kosta. Discrete gradient fields on infinite complexes. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 623-639. doi: 10.3934/dcds.2011.30.623

[8]

J. K. Krottje. On the dynamics of a mixed parabolic-gradient system. Communications on Pure & Applied Analysis, 2003, 2 (4) : 521-537. doi: 10.3934/cpaa.2003.2.521

[9]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[10]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial & Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[11]

Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755

[12]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

[13]

Yigui Ou, Haichan Lin. A class of accelerated conjugate-gradient-like methods based on a modified secant equation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019013

[14]

Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333

[15]

Arnaud Goullet, Shaun Harker, Konstantin Mischaikow, William D. Kalies, Dinesh Kasti. Efficient computation of Lyapunov functions for Morse decompositions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2419-2451. doi: 10.3934/dcdsb.2015.20.2419

[16]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[17]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[18]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[19]

Tomoharu Suda. Construction of Lyapunov functions using Helmholtz–Hodge decomposition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2437-2454. doi: 10.3934/dcds.2019103

[20]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

[Back to Top]