• Previous Article
    Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior
  • DCDS Home
  • This Issue
  • Next Article
    Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics
2015, 35(1): 301-322. doi: 10.3934/dcds.2015.35.301

Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion

1. 

School of Mathematical Sciences & Beijing Center of Mathematics and Information Sciences, Capital Normal University, Beijing, 100048, China

2. 

The Institute of Mathematical Sciences, The Chinese University of Hong Kong, China

Received  January 2014 Revised  July 2014 Published  August 2014

Whether or not classical solutions of the 3D incompressible MHD equations with full dissipation and magnetic diffusion can develop finite-time singularities is a long standing open problem of fluid dynamics and PDE theory. In this paper, we investigate the Cauchy problem for the 3D axisymmetric MHD equations with horizontal dissipation and vertical magnetic diffusion. We get a unique global smooth solution under the assumption that $u_\theta$ and $b_r$ are trivial. In absence of some viscosities, there is no smoothing effect on the derivatives of that direction. However, we take full advantage of the structures of MHD system to make up this shortcoming.
Citation: Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301
References:
[1]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443. doi: 10.1007/s002200050067.

[2]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803. doi: 10.1016/j.aim.2010.08.017.

[3]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.

[4]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645. doi: 10.1007/s002090100317.

[5]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity,, M2AN Math. Model. Numer. Anal., 34 (2000), 315. doi: 10.1051/m2an:2000143.

[6]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241. doi: 10.1007/BF00250512.

[7]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data,, J. Funct. Anal., 260 (2011), 745. doi: 10.1016/j.jfa.2010.10.012.

[8]

T. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622. doi: 10.1080/03605300802108057.

[9]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,(Russian),, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.

[10]

Z. Lei, On axially symmetric incompressible Magnetohydrodynamics in three dimensions,, preprint, ().

[11]

S. Leonardi, J. Malek, J. Necas and M. Pokorny, On axially symmetric flows in $R^{3}$,, Z. Anal. Anwendungen, 18 (1999), 639. doi: 10.4171/ZAA/903.

[12]

F.-H. Lin, L. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system,, preprint, ().

[13]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation,, Comm. Math. Phys., 321 (2013), 33. doi: 10.1007/s00220-013-1721-2.

[14]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635. doi: 10.1002/cpa.3160360506.

[15]

M. R. Ukhovskii and V. I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52. doi: 10.1016/0021-8928(68)90147-0.

[16]

J. Wu, Viscous and inviscid magnetohydrodynamics equations,, J. Anal. Math., 73 (1997), 251. doi: 10.1007/BF02788146.

show all references

References:
[1]

R. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443. doi: 10.1007/s002200050067.

[2]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803. doi: 10.1016/j.aim.2010.08.017.

[3]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.

[4]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645. doi: 10.1007/s002090100317.

[5]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity,, M2AN Math. Model. Numer. Anal., 34 (2000), 315. doi: 10.1051/m2an:2000143.

[6]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241. doi: 10.1007/BF00250512.

[7]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data,, J. Funct. Anal., 260 (2011), 745. doi: 10.1016/j.jfa.2010.10.012.

[8]

T. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622. doi: 10.1080/03605300802108057.

[9]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,(Russian),, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.

[10]

Z. Lei, On axially symmetric incompressible Magnetohydrodynamics in three dimensions,, preprint, ().

[11]

S. Leonardi, J. Malek, J. Necas and M. Pokorny, On axially symmetric flows in $R^{3}$,, Z. Anal. Anwendungen, 18 (1999), 639. doi: 10.4171/ZAA/903.

[12]

F.-H. Lin, L. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system,, preprint, ().

[13]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation,, Comm. Math. Phys., 321 (2013), 33. doi: 10.1007/s00220-013-1721-2.

[14]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635. doi: 10.1002/cpa.3160360506.

[15]

M. R. Ukhovskii and V. I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52. doi: 10.1016/0021-8928(68)90147-0.

[16]

J. Wu, Viscous and inviscid magnetohydrodynamics equations,, J. Anal. Math., 73 (1997), 251. doi: 10.1007/BF02788146.

[1]

Jishan Fan, Tohru Ozawa. Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion. Kinetic & Related Models, 2014, 7 (1) : 45-56. doi: 10.3934/krm.2014.7.45

[2]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[3]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[4]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

[5]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[6]

Luca Bisconti, Davide Catania. Remarks on global attractors for the 3D Navier--Stokes equations with horizontal filtering. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 59-75. doi: 10.3934/dcdsb.2015.20.59

[7]

Yong Zhou. Remarks on regularities for the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 881-886. doi: 10.3934/dcds.2005.12.881

[8]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[9]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[10]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[11]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[12]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[13]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[14]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[15]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[16]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[17]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[18]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[19]

Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119

[20]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]