2015, 35(8): 3745-3769. doi: 10.3934/dcds.2015.35.3745

Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems

1. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801

Received  May 2014 Revised  December 2014 Published  February 2015

In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynamical systems. The existence and bifurcation of random periodic (random almost periodic, random almost automorphic) solutions have been established for a one-dimensional stochastic equation with multiplicative noise.
Citation: Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998). doi: 10.1007/978-3-662-12878-7.

[2]

L. Arnold and P. Boxler, Stochastic bifurcation: instructive examples in dimension one,, Diffusion Processes and Related Problems in Analysis, 27 (1992), 241.

[3]

L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems,, Advances in Nonlinear Stochastic Mechanics, 47 (1996), 19. doi: 10.1007/978-94-009-0321-0_3.

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).

[5]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1. doi: 10.1142/S0219493706001621.

[6]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845. doi: 10.1016/j.jde.2008.05.017.

[7]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Continuous Dynamical Systems, 21 (2008), 415. doi: 10.3934/dcds.2008.21.415.

[8]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439. doi: 10.3934/dcdsb.2010.14.439.

[9]

T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Anal., 74 (2011), 3671. doi: 10.1016/j.na.2011.02.047.

[10]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.

[11]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Analysis, 11 (2003), 153. doi: 10.1023/A:1022902802385.

[12]

I. Chueshow, Monotone Random Systems-Theory and Applications,, Lecture Notes in Mathematics, 1779 (2002). doi: 10.1007/b83277.

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365. doi: 10.1007/BF01193705.

[14]

H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation,, J. Dyn. Diff. Eqns., 10 (1998), 259. doi: 10.1023/A:1022665916629.

[15]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133. doi: 10.4310/CMS.2003.v1.n1.a9.

[16]

A. M. Fink, Almost Periodic Differential Equations,, Lecture Notes in Mathematics 377, (1974).

[17]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, Stoch. Stoch. Rep., 59 (1996), 21. doi: 10.1080/17442509608834083.

[18]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671. doi: 10.1007/s10884-011-9222-5.

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).

[20]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855. doi: 10.3934/dcds.2009.24.855.

[21]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).

[22]

Q. Liu and Y. Wang, Phase-translation group actions on strongly monotone skew-product semiflows,, Transactions of American Mathematical Society, 364 (2012), 3781. doi: 10.1090/S0002-9947-2012-05555-3.

[23]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185.

[24]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations,, Van Nostrand Reinhold, (1971).

[25]

R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002). doi: 10.1007/978-1-4757-5037-9.

[26]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998), 1. doi: 10.1090/memo/0647.

[27]

W. Shen and Y. Yi, Dynamics of almost periodic scalar parabolic equations,, J. Differential Equations, 122 (1995), 114. doi: 10.1006/jdeq.1995.1141.

[28]

W. Shen and Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence,, J. Differential Equations, 122 (1995), 373. doi: 10.1006/jdeq.1995.1152.

[29]

W. Shen and Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures,, Trans. Amer. Math. Soc., 347 (1995), 4413. doi: 10.1090/S0002-9947-1995-1311916-9.

[30]

W. Shen and Y. Yi, Ergodicity of minimal sets in scalar parabolic equations,, J. Dynamics and Differential Equations, 8 (1996), 299. doi: 10.1007/BF02218894.

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3.

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544. doi: 10.1016/j.jde.2012.05.015.

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise,, Discrete and Continuous Dynamical Systems Series A, 34 (2014), 269. doi: 10.3934/dcds.2014.34.269.

[34]

B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations,, Nonlinear Analysis TMA, 103 (2014), 9. doi: 10.1016/j.na.2014.02.013.

[35]

Y. Wang, Asymptotic symmetry in strongly monotone skew-product semiflows with applications,, Nonlinearity, 22 (2009), 765. doi: 10.1088/0951-7715/22/4/005.

[36]

J. R. Ward Jr., Bounded and almost periodic solutions of semi-linear parabolic equations,, Rocky Mountain Journal of Mathematics, 18 (1988), 479. doi: 10.1216/RMJ-1988-18-2-479.

[37]

K. Xu, Bifurcations of random differential equations in dimension one,, Random and Computational Dynamics, 1 (1993), 277.

[38]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,, Springer-Verlag, (1975).

[39]

S. Zaidman, Topics in Abstract Differential Equations II,, Pitman Research Notes in Mathematics Series 321, (1995).

[40]

H. Zhao and Z. Zheng, Random periodic solutions of random dynamical systems,, J. Differential Equations, 246 (2009), 2020. doi: 10.1016/j.jde.2008.10.011.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998). doi: 10.1007/978-3-662-12878-7.

[2]

L. Arnold and P. Boxler, Stochastic bifurcation: instructive examples in dimension one,, Diffusion Processes and Related Problems in Analysis, 27 (1992), 241.

[3]

L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems,, Advances in Nonlinear Stochastic Mechanics, 47 (1996), 19. doi: 10.1007/978-94-009-0321-0_3.

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).

[5]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1. doi: 10.1142/S0219493706001621.

[6]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845. doi: 10.1016/j.jde.2008.05.017.

[7]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Continuous Dynamical Systems, 21 (2008), 415. doi: 10.3934/dcds.2008.21.415.

[8]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439. doi: 10.3934/dcdsb.2010.14.439.

[9]

T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Anal., 74 (2011), 3671. doi: 10.1016/j.na.2011.02.047.

[10]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.

[11]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Analysis, 11 (2003), 153. doi: 10.1023/A:1022902802385.

[12]

I. Chueshow, Monotone Random Systems-Theory and Applications,, Lecture Notes in Mathematics, 1779 (2002). doi: 10.1007/b83277.

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365. doi: 10.1007/BF01193705.

[14]

H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation,, J. Dyn. Diff. Eqns., 10 (1998), 259. doi: 10.1023/A:1022665916629.

[15]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133. doi: 10.4310/CMS.2003.v1.n1.a9.

[16]

A. M. Fink, Almost Periodic Differential Equations,, Lecture Notes in Mathematics 377, (1974).

[17]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, Stoch. Stoch. Rep., 59 (1996), 21. doi: 10.1080/17442509608834083.

[18]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671. doi: 10.1007/s10884-011-9222-5.

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).

[20]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855. doi: 10.3934/dcds.2009.24.855.

[21]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).

[22]

Q. Liu and Y. Wang, Phase-translation group actions on strongly monotone skew-product semiflows,, Transactions of American Mathematical Society, 364 (2012), 3781. doi: 10.1090/S0002-9947-2012-05555-3.

[23]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185.

[24]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations,, Van Nostrand Reinhold, (1971).

[25]

R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002). doi: 10.1007/978-1-4757-5037-9.

[26]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998), 1. doi: 10.1090/memo/0647.

[27]

W. Shen and Y. Yi, Dynamics of almost periodic scalar parabolic equations,, J. Differential Equations, 122 (1995), 114. doi: 10.1006/jdeq.1995.1141.

[28]

W. Shen and Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence,, J. Differential Equations, 122 (1995), 373. doi: 10.1006/jdeq.1995.1152.

[29]

W. Shen and Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures,, Trans. Amer. Math. Soc., 347 (1995), 4413. doi: 10.1090/S0002-9947-1995-1311916-9.

[30]

W. Shen and Y. Yi, Ergodicity of minimal sets in scalar parabolic equations,, J. Dynamics and Differential Equations, 8 (1996), 299. doi: 10.1007/BF02218894.

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3.

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544. doi: 10.1016/j.jde.2012.05.015.

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise,, Discrete and Continuous Dynamical Systems Series A, 34 (2014), 269. doi: 10.3934/dcds.2014.34.269.

[34]

B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations,, Nonlinear Analysis TMA, 103 (2014), 9. doi: 10.1016/j.na.2014.02.013.

[35]

Y. Wang, Asymptotic symmetry in strongly monotone skew-product semiflows with applications,, Nonlinearity, 22 (2009), 765. doi: 10.1088/0951-7715/22/4/005.

[36]

J. R. Ward Jr., Bounded and almost periodic solutions of semi-linear parabolic equations,, Rocky Mountain Journal of Mathematics, 18 (1988), 479. doi: 10.1216/RMJ-1988-18-2-479.

[37]

K. Xu, Bifurcations of random differential equations in dimension one,, Random and Computational Dynamics, 1 (1993), 277.

[38]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,, Springer-Verlag, (1975).

[39]

S. Zaidman, Topics in Abstract Differential Equations II,, Pitman Research Notes in Mathematics Series 321, (1995).

[40]

H. Zhao and Z. Zheng, Random periodic solutions of random dynamical systems,, J. Differential Equations, 246 (2009), 2020. doi: 10.1016/j.jde.2008.10.011.

[1]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[2]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[3]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[4]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[5]

Klaus Reiner Schenk-Hoppé. Random attractors--general properties, existence and applications to stochastic bifurcation theory. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 99-130. doi: 10.3934/dcds.1998.4.99

[6]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[7]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[8]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[9]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[10]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[11]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[12]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[13]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[14]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[15]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[16]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[17]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[18]

E. Kapsza, Gy. Károlyi, S. Kovács, G. Domokos. Regular and random patterns in complex bifurcation diagrams. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 519-540. doi: 10.3934/dcdsb.2003.3.519

[19]

Tomás Caraballo, Stefanie Sonner. Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6383-6403. doi: 10.3934/dcds.2017277

[20]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]