September  2015, 35(9): 3879-3900. doi: 10.3934/dcds.2015.35.3879

On the system of partial differential equations arising in mean field type control

1. 

Université Paris Diderot, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, Sorbonne Paris Cité F-75205 Paris, France

Received  May 2014 Revised  September 2014 Published  April 2015

We discuss the system of Fokker-Planck and Hamilton-Jacobi-Bellman equations arising from the finite horizon control of McKean-Vlasov dynamics. We give examples of existence and uniqueness results. Finally, we propose some simple models for the motion of pedestrians and report about numerical simulations in which we compare mean filed games and mean field type control.
Citation: Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879
References:
[1]

Y. Achdou, Finite difference methods for mean field games,, in Hamilton-Jacobi equations: Approximations, (2013), 1. doi: 10.1007/978-3-642-36433-4_1. Google Scholar

[2]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Convergence of a finite difference method,, SIAM J. Numer. Anal., 51 (2013), 2585. doi: 10.1137/120882421. Google Scholar

[3]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136. doi: 10.1137/090758477. Google Scholar

[4]

A. Bensoussan and J. Frehse, Control and Nash games with mean field effect,, Chin. Ann. Math. Ser. B, 34 (2013), 161. doi: 10.1007/s11401-013-0767-y. Google Scholar

[5]

A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory,, Springer Briefs in Mathematics, (2013). doi: 10.1007/978-1-4614-8508-7. Google Scholar

[6]

P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games,, Netw. Heterog. Media, 7 (2012), 279. doi: 10.3934/nhm.2012.7.279. Google Scholar

[7]

R. Carmona and F. Delarue, Mean field forward-backward stochastic differential equations,, Electron. Commun. Probab., 18 (2013). doi: 10.1214/ECP.v18-2446. Google Scholar

[8]

R. Carmona, F. Delarue and A. Lachapelle, Control of McKean-Vlasov dynamics versus mean field games,, Math. Financ. Econ., 7 (2013), 131. doi: 10.1007/s11579-012-0089-y. Google Scholar

[9]

D. A. Gomes and J. Saúde, Mean field games models-a brief survey,, Dyn. Games Appl., 4 (2014), 110. doi: 10.1007/s13235-013-0099-2. Google Scholar

[10]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968). Google Scholar

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019. Google Scholar

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018. Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8. Google Scholar

[14]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). doi: 10.1142/3302. Google Scholar

[15]

P.-L. Lions, Cours du Collège de France, 2007-2011,, , (). Google Scholar

[16]

H. P. McKean Jr., A class of Markov processes associated with nonlinear parabolic equations,, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907. doi: 10.1073/pnas.56.6.1907. Google Scholar

[17]

A. Porretta, Weak solutions to Fokker-Planck equations and mean field games,, Archive for Rational Mechanics and Analysis, 216 (2015), 1. doi: 10.1007/s00205-014-0799-9. Google Scholar

[18]

A. Porretta, On the planning problem for a class of mean field games,, C. R. Math. Acad. Sci. Paris, 351 (2013), 457. doi: 10.1016/j.crma.2013.07.004. Google Scholar

[19]

A. Porretta, On the planning problem for the mean field games system,, Dyn. Games Appl., 4 (2014), 231. doi: 10.1007/s13235-013-0080-0. Google Scholar

[20]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, (1991), 165. doi: 10.1007/BFb0085169. Google Scholar

show all references

References:
[1]

Y. Achdou, Finite difference methods for mean field games,, in Hamilton-Jacobi equations: Approximations, (2013), 1. doi: 10.1007/978-3-642-36433-4_1. Google Scholar

[2]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Convergence of a finite difference method,, SIAM J. Numer. Anal., 51 (2013), 2585. doi: 10.1137/120882421. Google Scholar

[3]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136. doi: 10.1137/090758477. Google Scholar

[4]

A. Bensoussan and J. Frehse, Control and Nash games with mean field effect,, Chin. Ann. Math. Ser. B, 34 (2013), 161. doi: 10.1007/s11401-013-0767-y. Google Scholar

[5]

A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory,, Springer Briefs in Mathematics, (2013). doi: 10.1007/978-1-4614-8508-7. Google Scholar

[6]

P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games,, Netw. Heterog. Media, 7 (2012), 279. doi: 10.3934/nhm.2012.7.279. Google Scholar

[7]

R. Carmona and F. Delarue, Mean field forward-backward stochastic differential equations,, Electron. Commun. Probab., 18 (2013). doi: 10.1214/ECP.v18-2446. Google Scholar

[8]

R. Carmona, F. Delarue and A. Lachapelle, Control of McKean-Vlasov dynamics versus mean field games,, Math. Financ. Econ., 7 (2013), 131. doi: 10.1007/s11579-012-0089-y. Google Scholar

[9]

D. A. Gomes and J. Saúde, Mean field games models-a brief survey,, Dyn. Games Appl., 4 (2014), 110. doi: 10.1007/s13235-013-0099-2. Google Scholar

[10]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968). Google Scholar

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019. Google Scholar

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018. Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8. Google Scholar

[14]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). doi: 10.1142/3302. Google Scholar

[15]

P.-L. Lions, Cours du Collège de France, 2007-2011,, , (). Google Scholar

[16]

H. P. McKean Jr., A class of Markov processes associated with nonlinear parabolic equations,, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907. doi: 10.1073/pnas.56.6.1907. Google Scholar

[17]

A. Porretta, Weak solutions to Fokker-Planck equations and mean field games,, Archive for Rational Mechanics and Analysis, 216 (2015), 1. doi: 10.1007/s00205-014-0799-9. Google Scholar

[18]

A. Porretta, On the planning problem for a class of mean field games,, C. R. Math. Acad. Sci. Paris, 351 (2013), 457. doi: 10.1016/j.crma.2013.07.004. Google Scholar

[19]

A. Porretta, On the planning problem for the mean field games system,, Dyn. Games Appl., 4 (2014), 231. doi: 10.1007/s13235-013-0080-0. Google Scholar

[20]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, (1991), 165. doi: 10.1007/BFb0085169. Google Scholar

[1]

Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control & Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026

[2]

Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

[3]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[4]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 0 (0) : 1-19. doi: 10.3934/jdg.2019016

[5]

Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237

[6]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[7]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[8]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[9]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[10]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

[11]

Carmen G. Higuera-Chan, Héctor Jasso-Fuentes, J. Adolfo Minjárez-Sosa. Control systems of interacting objects modeled as a game against nature under a mean field approach. Journal of Dynamics & Games, 2017, 4 (1) : 59-74. doi: 10.3934/jdg.2017004

[12]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[13]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[14]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[15]

Hongyong Deng, Wei Wei. Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1409-1422. doi: 10.3934/jimo.2015.11.1409

[16]

Mikhail D. Surnachev, Vasily V. Zhikov. On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1783-1812. doi: 10.3934/cpaa.2013.12.1783

[17]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[18]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[19]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[20]

Chang-Shou Lin. An expository survey on the recent development of mean field equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 387-410. doi: 10.3934/dcds.2007.19.387

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]