-
Previous Article
Computation of Lyapunov functions for systems with multiple local attractors
- DCDS Home
- This Issue
-
Next Article
Large deviations for some fast stochastic volatility models by viscosity methods
State constrained $L^\infty$ optimal control problems interpreted as differential games
1. | Laboratoire de Mathematiques, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, 29200 Brest |
References:
[1] |
Birkhäuser Boston, Inc., Boston, Basel, Berlin, 1990. |
[2] |
Systems and Control: Foundations and Applications. Boston, Birkhäuser, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[3] |
Funkcial. Ekvac., 37 (1994), 19-43. |
[4] |
(French) [Viscosity solutions of Hamilton-Jacobi equations], Mathématiques & Applications, no. 17, Paris, Springer-Verlag, 1994. |
[5] |
Nonlinear Anal., 15 (1990), 1155-1165.
doi: 10.1016/0362-546X(90)90051-H. |
[6] |
Nonlinear Analysis, Differential Equations and Control, (Montreal, QC, 1998) (F. Clarke and R. J. Stern, eds.), NATO Sci. Ser. C Math. Phys. Sci., vol. 528, Kluwer Academic Publishers, DorFdrecht, (1999), 1-60. |
[7] |
Nonlinear Anal., Theory Methods Appl., 13 (1989), 1067-1090.
doi: 10.1016/0362-546X(89)90096-5. |
[8] |
Int. J. Game Theory, 34 (2006), 495-527.
doi: 10.1007/s00182-006-0030-9. |
[9] |
Nonlinear Differ. Equ. Appl., 20 (2013), 895-918.
doi: 10.1007/s00030-012-0186-x. |
[10] |
J. Differential Eq., 252 (2012), 1912-1933.
doi: 10.1016/j.jde.2011.09.007. |
[11] |
IEEE TAC, 56 (2011), 1090-1096.
doi: 10.1109/TAC.2010.2088670. |
[12] |
Mathematical Control and Related Fields, 3 (2013), 245-267.
doi: 10.3934/mcrf.2013.3.245. |
[13] |
P. Bettiol and R. B. Vinter, Refined estimates on trajectories of state constrained control problems,, Preprint., (). Google Scholar |
[14] |
ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 23-54.
doi: 10.1051/m2an:1999103. |
[15] |
International Journal of Mathematics and Mathematical Sciences Issue, (2003), 4517-4538.
doi: 10.1155/S0161171203302108. |
[16] |
Indiana Un. Math.J., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[17] |
IEEE Trans. Autom. Control, 44 (1999), 1180-1196.
doi: 10.1109/9.769372. |
[18] |
Nonlinear Differ. Equ. Appl., 20 (2013), 361-383.
doi: 10.1007/s00030-012-0183-0. |
[19] |
J. Differential Eq., 161 (2000), 449-478.
doi: 10.1006/jdeq.2000.3711. |
[20] |
Automatica, 40 (2004), 917-927.
doi: 10.1016/j.automatica.2004.01.012. |
[21] |
SIAM J. Control Optim., 36 (1998), 814-839.
doi: 10.1137/S0363012995294602. |
[22] |
J. Math. Anal. Appl., 213 (1997), 15-31.
doi: 10.1006/jmaa.1997.5327. |
[23] |
J. Math. Anal. Appl., 270 (2002), 519-542.
doi: 10.1016/S0022-247X(02)00087-2. |
[24] |
SIAM J. Control Optim., 44 (2005), 939-968.
doi: 10.1137/S0363012902415244. |
[25] |
Academic Press, New York-London, 1972. |
show all references
References:
[1] |
Birkhäuser Boston, Inc., Boston, Basel, Berlin, 1990. |
[2] |
Systems and Control: Foundations and Applications. Boston, Birkhäuser, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[3] |
Funkcial. Ekvac., 37 (1994), 19-43. |
[4] |
(French) [Viscosity solutions of Hamilton-Jacobi equations], Mathématiques & Applications, no. 17, Paris, Springer-Verlag, 1994. |
[5] |
Nonlinear Anal., 15 (1990), 1155-1165.
doi: 10.1016/0362-546X(90)90051-H. |
[6] |
Nonlinear Analysis, Differential Equations and Control, (Montreal, QC, 1998) (F. Clarke and R. J. Stern, eds.), NATO Sci. Ser. C Math. Phys. Sci., vol. 528, Kluwer Academic Publishers, DorFdrecht, (1999), 1-60. |
[7] |
Nonlinear Anal., Theory Methods Appl., 13 (1989), 1067-1090.
doi: 10.1016/0362-546X(89)90096-5. |
[8] |
Int. J. Game Theory, 34 (2006), 495-527.
doi: 10.1007/s00182-006-0030-9. |
[9] |
Nonlinear Differ. Equ. Appl., 20 (2013), 895-918.
doi: 10.1007/s00030-012-0186-x. |
[10] |
J. Differential Eq., 252 (2012), 1912-1933.
doi: 10.1016/j.jde.2011.09.007. |
[11] |
IEEE TAC, 56 (2011), 1090-1096.
doi: 10.1109/TAC.2010.2088670. |
[12] |
Mathematical Control and Related Fields, 3 (2013), 245-267.
doi: 10.3934/mcrf.2013.3.245. |
[13] |
P. Bettiol and R. B. Vinter, Refined estimates on trajectories of state constrained control problems,, Preprint., (). Google Scholar |
[14] |
ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 23-54.
doi: 10.1051/m2an:1999103. |
[15] |
International Journal of Mathematics and Mathematical Sciences Issue, (2003), 4517-4538.
doi: 10.1155/S0161171203302108. |
[16] |
Indiana Un. Math.J., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[17] |
IEEE Trans. Autom. Control, 44 (1999), 1180-1196.
doi: 10.1109/9.769372. |
[18] |
Nonlinear Differ. Equ. Appl., 20 (2013), 361-383.
doi: 10.1007/s00030-012-0183-0. |
[19] |
J. Differential Eq., 161 (2000), 449-478.
doi: 10.1006/jdeq.2000.3711. |
[20] |
Automatica, 40 (2004), 917-927.
doi: 10.1016/j.automatica.2004.01.012. |
[21] |
SIAM J. Control Optim., 36 (1998), 814-839.
doi: 10.1137/S0363012995294602. |
[22] |
J. Math. Anal. Appl., 213 (1997), 15-31.
doi: 10.1006/jmaa.1997.5327. |
[23] |
J. Math. Anal. Appl., 270 (2002), 519-542.
doi: 10.1016/S0022-247X(02)00087-2. |
[24] |
SIAM J. Control Optim., 44 (2005), 939-968.
doi: 10.1137/S0363012902415244. |
[25] |
Academic Press, New York-London, 1972. |
[1] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021026 |
[2] |
Beixiang Fang, Qin Zhao. Uniqueness of steady 1-D shock solutions in a finite nozzle via vanishing viscosity aguments. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021066 |
[3] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[4] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[5] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[6] |
İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021010 |
[7] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[10] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[11] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[12] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[13] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[14] |
Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058 |
[15] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[16] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[17] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[18] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[19] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[20] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]