-
Previous Article
Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
- DCDS Home
- This Issue
-
Next Article
State constrained $L^\infty$ optimal control problems interpreted as differential games
Computation of Lyapunov functions for systems with multiple local attractors
1. | School of Science and Engineering, Reykjavik University, Menntavegi 1, Reykjavik, IS-101, Iceland, Iceland |
2. | Department of Mathematics, University of Sussex, Falmer BN1 9QH |
3. | School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales 2308, Australia |
References:
[1] |
R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions,, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33.
doi: 10.3934/dcdsb.2012.17.33. |
[2] |
H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem,, Journal of Computational and Nonlinear Dynamics, 1 (2006), 312.
doi: 10.1115/1.2338651. |
[3] |
J. Barnat, J. Chaloupka and J. van de Pol, Distributed algorithms for SCC decomposition,, Journal of Logic and Computation, 21 (2011), 23.
doi: 10.1093/logcom/exp003. |
[4] |
J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, (2014), 1181. Google Scholar |
[5] |
J. Björnsson, P. Giesl, S. Hafstein, C. M. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction,, in Proceedings of the 53rd IEEE Conference on Decision and Control, (2014), 5506.
doi: 10.1109/CDC.2014.7040250. |
[6] |
C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series no. 38, (1978).
|
[7] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO-set oriented numerical methods for dynamical systems,, in Ergodic theory, (2001), 145.
|
[8] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, no. 1904 in Lecture Notes in Mathematics, (1904).
|
[9] |
P. Giesl and S. Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming,, Journal of Mathematical Analysis and Applications, 388 (2012), 463.
doi: 10.1016/j.jmaa.2011.10.047. |
[10] |
P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, Journal of Mathematical Analysis and Applications, 410 (2014), 292.
doi: 10.1016/j.jmaa.2013.08.014. |
[11] |
S. Hafstein, An Algorithm for Constructing Lyapunov Functions,, Electronic Journal of Differential Equations Mongraphs, (2007). Google Scholar |
[12] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction,, in Proceedings of the 2014 American Control Conference, (2014), 548.
doi: 10.1109/ACC.2014.6858660. |
[13] |
M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces,, Proc. Amer. Math. Soc., 126 (1998), 245.
doi: 10.1090/S0002-9939-98-04500-6. |
[14] |
O. Junge, Mengenorientierte Methoden zur Numerischen Analyse Dynamischer Systeme,, PhD thesis at the University of Paderborn, (2000). Google Scholar |
[15] |
W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence,, Foundations of Computational Mathematics, 5 (2005), 409.
doi: 10.1007/s10208-004-0163-9. |
[16] |
S. Marinosson, Lyapunov function construction for ordinary differential equations with linear programming,, Dynamical Systems, 17 (2002), 137.
doi: 10.1080/0268111011011847. |
[17] |
S. Marinosson, Stability Analysis of Nonlinear Systems with Linear Programming: A Lyapunov Functions Based Approach,, PhD thesis, (2002). Google Scholar |
[18] |
J. L. Massera, On Liapounoff's conditions of stability,, Annals of Mathematics, 50 (1949), 705.
doi: 10.2307/1969558. |
[19] |
D. Norton, The fundamental theorem of dynamical systems,, Comment. Math. Univ. Carolinae, 36 (1995), 585.
|
[20] |
A. Papachristodoulou and S. Prajna, The construction of Lyapunov functions using the sum of squares decomposition,, in Proceedings of the 41st IEEE Conference on Decision and Control, 3 (2002), 3482.
doi: 10.1109/CDC.2002.1184414. |
[21] |
M. Patrao, Existence of complete Lyapunov functions for semiflows on separable metric spaces,, Far East Journal of Dynamical Systems, 17 (2011), 49.
|
[22] |
M. Peet and A. Papachristodoulou, A converse sum-of-squares Lyapunov result: An existence proof based on the Picard iteration,, in Proceedings of the 49th IEEE Conference on Decision and Control, (2010), 5949.
doi: 10.1109/CDC.2010.5717536. |
[23] |
S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions,, SIAM J. Control and Optimization, 48 (2010), 4377.
doi: 10.1137/090749955. |
[24] |
R. Tarjan, Depth-first search and linear graph algorithms,, SIAM J. Comput., 1 (1972), 146.
doi: 10.1137/0201010. |
[25] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions,, ESAIM Control Optim. Calc. Var., 5 (2000), 313.
doi: 10.1051/cocv:2000113. |
[26] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53.
doi: 10.1007/s002080010018. |
[27] |
T. Yoshizawa, On the stability of solutions of a system of differential equations,, Memoirs of the College of Science, 29 (1955), 27.
|
show all references
References:
[1] |
R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions,, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33.
doi: 10.3934/dcdsb.2012.17.33. |
[2] |
H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem,, Journal of Computational and Nonlinear Dynamics, 1 (2006), 312.
doi: 10.1115/1.2338651. |
[3] |
J. Barnat, J. Chaloupka and J. van de Pol, Distributed algorithms for SCC decomposition,, Journal of Logic and Computation, 21 (2011), 23.
doi: 10.1093/logcom/exp003. |
[4] |
J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, (2014), 1181. Google Scholar |
[5] |
J. Björnsson, P. Giesl, S. Hafstein, C. M. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction,, in Proceedings of the 53rd IEEE Conference on Decision and Control, (2014), 5506.
doi: 10.1109/CDC.2014.7040250. |
[6] |
C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series no. 38, (1978).
|
[7] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO-set oriented numerical methods for dynamical systems,, in Ergodic theory, (2001), 145.
|
[8] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, no. 1904 in Lecture Notes in Mathematics, (1904).
|
[9] |
P. Giesl and S. Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming,, Journal of Mathematical Analysis and Applications, 388 (2012), 463.
doi: 10.1016/j.jmaa.2011.10.047. |
[10] |
P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, Journal of Mathematical Analysis and Applications, 410 (2014), 292.
doi: 10.1016/j.jmaa.2013.08.014. |
[11] |
S. Hafstein, An Algorithm for Constructing Lyapunov Functions,, Electronic Journal of Differential Equations Mongraphs, (2007). Google Scholar |
[12] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction,, in Proceedings of the 2014 American Control Conference, (2014), 548.
doi: 10.1109/ACC.2014.6858660. |
[13] |
M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces,, Proc. Amer. Math. Soc., 126 (1998), 245.
doi: 10.1090/S0002-9939-98-04500-6. |
[14] |
O. Junge, Mengenorientierte Methoden zur Numerischen Analyse Dynamischer Systeme,, PhD thesis at the University of Paderborn, (2000). Google Scholar |
[15] |
W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence,, Foundations of Computational Mathematics, 5 (2005), 409.
doi: 10.1007/s10208-004-0163-9. |
[16] |
S. Marinosson, Lyapunov function construction for ordinary differential equations with linear programming,, Dynamical Systems, 17 (2002), 137.
doi: 10.1080/0268111011011847. |
[17] |
S. Marinosson, Stability Analysis of Nonlinear Systems with Linear Programming: A Lyapunov Functions Based Approach,, PhD thesis, (2002). Google Scholar |
[18] |
J. L. Massera, On Liapounoff's conditions of stability,, Annals of Mathematics, 50 (1949), 705.
doi: 10.2307/1969558. |
[19] |
D. Norton, The fundamental theorem of dynamical systems,, Comment. Math. Univ. Carolinae, 36 (1995), 585.
|
[20] |
A. Papachristodoulou and S. Prajna, The construction of Lyapunov functions using the sum of squares decomposition,, in Proceedings of the 41st IEEE Conference on Decision and Control, 3 (2002), 3482.
doi: 10.1109/CDC.2002.1184414. |
[21] |
M. Patrao, Existence of complete Lyapunov functions for semiflows on separable metric spaces,, Far East Journal of Dynamical Systems, 17 (2011), 49.
|
[22] |
M. Peet and A. Papachristodoulou, A converse sum-of-squares Lyapunov result: An existence proof based on the Picard iteration,, in Proceedings of the 49th IEEE Conference on Decision and Control, (2010), 5949.
doi: 10.1109/CDC.2010.5717536. |
[23] |
S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions,, SIAM J. Control and Optimization, 48 (2010), 4377.
doi: 10.1137/090749955. |
[24] |
R. Tarjan, Depth-first search and linear graph algorithms,, SIAM J. Comput., 1 (1972), 146.
doi: 10.1137/0201010. |
[25] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions,, ESAIM Control Optim. Calc. Var., 5 (2000), 313.
doi: 10.1051/cocv:2000113. |
[26] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53.
doi: 10.1007/s002080010018. |
[27] |
T. Yoshizawa, On the stability of solutions of a system of differential equations,, Memoirs of the College of Science, 29 (1955), 27.
|
[1] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[2] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[3] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[4] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[5] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[6] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[7] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[8] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[9] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[10] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[11] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[12] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[13] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[14] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[15] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[16] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[17] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[18] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[19] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[20] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]