-
Previous Article
(Un)conditional consensus emergence under perturbed and decentralized feedback controls
- DCDS Home
- This Issue
-
Next Article
Computation of Lyapunov functions for systems with multiple local attractors
Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
1. | Laboratoire Jacques-Louis Lions, UMR 7598, Université Paris-Diderot (Paris 7), UFR de Mathématiques - 5 rue Thomas Mann, 75205 Paris CEDEX 13 |
2. | Dipartimento di Matematica, Istituto "Guido Castelnuovo", Sapienza Università di Roma, Piazzale Aldo Moro, 2 I-00185 Roma |
3. | Dipartimento di Matematica e Fisica, Università di Roma Tre, L.go S. Leonardo Murialdo, 1, 00146 Roma, Italy |
4. | Mathematisches Institut, Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, 95440 Bayreuth, Germany |
5. | Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz, Austria |
6. | Unité des mathématiques appliquées (UMA), ENSTA ParisTech, 828 Bd Maréchaux, 91120 Palaiseau |
References:
[1] |
R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes,, Comm. Pure Appl. Math., 49 (1996), 1339.
doi: 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B. |
[2] |
R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 2233.
doi: 10.1137/S0036142998345980. |
[3] |
S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equations on triangular meshes,, J. Sci. Comput., 15 (2000), 197.
doi: 10.1023/A:1007633810484. |
[4] |
D. S. Balsara, T. Rumpf, M. Dumbser and C.-D. Munz, Efficient, high accuracy ader-weno schemes for hydrodynamics and divergence-free magnetohydrodynamics,, J. Comput. Phys., 228 (2009), 2480.
doi: 10.1016/j.jcp.2008.12.003. |
[5] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Birkhäuser, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[6] |
G. Barles, Solutions de Viscositè des Equations d'Hamilton-Jacobi,, Springer-Verlag, (1998). Google Scholar |
[7] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.
|
[8] |
F. Bauer, L. Grüne and W. Semmler, Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations,, Appl. Numer. Math., 56 (2006), 1196.
doi: 10.1016/j.apnum.2006.03.011. |
[9] |
O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems,, J. Sci. Comput., 42 (2010), 251.
doi: 10.1007/s10915-009-9329-6. |
[10] |
O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations,, J. Sci. Comput., 55 (2013), 575.
doi: 10.1007/s10915-012-9648-x. |
[11] |
O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data,, Numer. Math., 115 (2010), 1.
doi: 10.1007/s00211-009-0271-1. |
[12] |
O. Bokanowski and H. Zidani, Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellmann equations,, J. Sci. Comput., 30 (2007), 1.
doi: 10.1007/s10915-005-9017-0. |
[13] |
S. Bryson, A. Kurganov, D. Levy and G. Petrova, Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations,, IMA J. Numer. Anal., 25 (2005), 113.
doi: 10.1093/imanum/drh015. |
[14] |
S. Bryson and D. Levy, High-order central WENO schemes for multidimensional Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 1339.
doi: 10.1137/S0036142902408404. |
[15] |
S. Bryson and D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations,, Appl. Numer. Math., 56 (2006), 1211.
doi: 10.1016/j.apnum.2006.03.005. |
[16] |
F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed system,, SIAM J. Control Optim., 40 (2001), 496.
doi: 10.1137/S036301299936316X. |
[17] |
I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161.
doi: 10.1007/BF01442176. |
[18] |
E. Carlini, M. Falcone, and R. Ferretti., An efficient algorithm for Hamilton-Jacobi equations in high dimension,, Comput. Vis. Sci., 7 (2004), 15.
doi: 10.1007/s00791-004-0124-5. |
[19] |
E. Carlini, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 27 (2005), 1071.
doi: 10.1137/040608787. |
[20] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach,, Math. Comp., 57 (1991), 169.
doi: 10.1090/S0025-5718-1991-1079010-2. |
[21] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory,, SIAM J. Numer. Anal., 30 (1993), 675.
doi: 10.1137/0730033. |
[22] |
L. Corrias, M. Falcone and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations,, Math. Comp., 64 (1995), 555.
doi: 10.1090/S0025-5718-1995-1265013-5. |
[23] |
M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Math. Comp., 43 (1984), 1.
doi: 10.1090/S0025-5718-1984-0744921-8. |
[24] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. Amer. Math. Soc., 78 (1980), 385.
doi: 10.1090/S0002-9939-1980-0553381-X. |
[25] |
M. Falcone, Numerical methods for differential games via PDEs,, Int. Game Theor. Rev., 8 (2006), 231.
doi: 10.1142/S0219198906000886. |
[26] |
M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations,, Numer. Math., 67 (1994), 315.
doi: 10.1007/s002110050031. |
[27] |
M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods,, J. Comp. Phys., 175 (2002), 559.
doi: 10.1006/jcph.2001.6954. |
[28] |
M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014).
doi: 10.1137/1.9781611973051. |
[29] |
R. Ferretti, Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers,, SIAM J. Numer. Anal., 40 (2002), 2240.
doi: 10.1137/S0036142901388378. |
[30] |
B. D. Froese and A. M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation,, SIAM J. Numer. Anal., 51 (2013), 423.
doi: 10.1137/120875065. |
[31] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, volume 118 of Applied Mathematical Sciences,, Springer-Verlag, (1996).
doi: 10.1007/978-1-4612-0713-9. |
[32] |
L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319.
doi: 10.1007/s002110050241. |
[33] |
L. Grüne, M. Kato and W. Semmler, Solving ecological management problems using dynamic programming,, J. Econ. Behav. Organ., 57 (2005), 448.
doi: 10.1016/j.jebo.2005.04.002. |
[34] |
A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III,, J. Comput. Phys., 71 (1987), 231.
doi: 10.1016/0021-9991(87)90031-3. |
[35] |
A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I,, SIAM J. Numer. Anal., 24 (1987), 279.
doi: 10.1137/0724022. |
[36] |
A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes,, Appl. Numer. Math., 2 (1986), 347.
doi: 10.1016/0168-9274(86)90039-5. |
[37] |
P. Hoch and O. Pironneau, A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows,, C. R. Math. Acad. Sci. Paris, 342 (2006), 151.
doi: 10.1016/j.crma.2005.11.007. |
[38] |
C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 21 (1999), 666.
doi: 10.1137/S1064827598337282. |
[39] |
G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,, J. Comput. Phys., 126 (1996), 202.
doi: 10.1006/jcph.1996.0130. |
[40] |
F. Li and C.-W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations,, Appl. Math. Lett., 18 (2005), 1204.
doi: 10.1016/j.aml.2004.10.009. |
[41] |
P. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations,, Num. Math., 69 (1995), 441.
doi: 10.1007/s002110050102. |
[42] |
X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes,, J. Comput. Phys., 115 (1994), 200.
doi: 10.1006/jcph.1994.1187. |
[43] |
S. Osher, Convergence of generalized MUSCL schemes,, SIAM J. Numer. Anal., 22 (1985), 947.
doi: 10.1137/0722057. |
[44] |
B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method,, J. Comput. Phys., 135 (1997), 227.
doi: 10.1006/jcph.1997.5757. |
[45] |
Y.-T. Zhang and C.-W. Shu, High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes,, SIAM J. Sci. Comput., 24 (2002), 1005.
doi: 10.1137/S1064827501396798. |
show all references
References:
[1] |
R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes,, Comm. Pure Appl. Math., 49 (1996), 1339.
doi: 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B. |
[2] |
R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 2233.
doi: 10.1137/S0036142998345980. |
[3] |
S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equations on triangular meshes,, J. Sci. Comput., 15 (2000), 197.
doi: 10.1023/A:1007633810484. |
[4] |
D. S. Balsara, T. Rumpf, M. Dumbser and C.-D. Munz, Efficient, high accuracy ader-weno schemes for hydrodynamics and divergence-free magnetohydrodynamics,, J. Comput. Phys., 228 (2009), 2480.
doi: 10.1016/j.jcp.2008.12.003. |
[5] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Birkhäuser, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[6] |
G. Barles, Solutions de Viscositè des Equations d'Hamilton-Jacobi,, Springer-Verlag, (1998). Google Scholar |
[7] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.
|
[8] |
F. Bauer, L. Grüne and W. Semmler, Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations,, Appl. Numer. Math., 56 (2006), 1196.
doi: 10.1016/j.apnum.2006.03.011. |
[9] |
O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems,, J. Sci. Comput., 42 (2010), 251.
doi: 10.1007/s10915-009-9329-6. |
[10] |
O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations,, J. Sci. Comput., 55 (2013), 575.
doi: 10.1007/s10915-012-9648-x. |
[11] |
O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data,, Numer. Math., 115 (2010), 1.
doi: 10.1007/s00211-009-0271-1. |
[12] |
O. Bokanowski and H. Zidani, Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellmann equations,, J. Sci. Comput., 30 (2007), 1.
doi: 10.1007/s10915-005-9017-0. |
[13] |
S. Bryson, A. Kurganov, D. Levy and G. Petrova, Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations,, IMA J. Numer. Anal., 25 (2005), 113.
doi: 10.1093/imanum/drh015. |
[14] |
S. Bryson and D. Levy, High-order central WENO schemes for multidimensional Hamilton-Jacobi equations,, SIAM J. Numer. Anal., 41 (2003), 1339.
doi: 10.1137/S0036142902408404. |
[15] |
S. Bryson and D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations,, Appl. Numer. Math., 56 (2006), 1211.
doi: 10.1016/j.apnum.2006.03.005. |
[16] |
F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed system,, SIAM J. Control Optim., 40 (2001), 496.
doi: 10.1137/S036301299936316X. |
[17] |
I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161.
doi: 10.1007/BF01442176. |
[18] |
E. Carlini, M. Falcone, and R. Ferretti., An efficient algorithm for Hamilton-Jacobi equations in high dimension,, Comput. Vis. Sci., 7 (2004), 15.
doi: 10.1007/s00791-004-0124-5. |
[19] |
E. Carlini, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 27 (2005), 1071.
doi: 10.1137/040608787. |
[20] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach,, Math. Comp., 57 (1991), 169.
doi: 10.1090/S0025-5718-1991-1079010-2. |
[21] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory,, SIAM J. Numer. Anal., 30 (1993), 675.
doi: 10.1137/0730033. |
[22] |
L. Corrias, M. Falcone and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations,, Math. Comp., 64 (1995), 555.
doi: 10.1090/S0025-5718-1995-1265013-5. |
[23] |
M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Math. Comp., 43 (1984), 1.
doi: 10.1090/S0025-5718-1984-0744921-8. |
[24] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. Amer. Math. Soc., 78 (1980), 385.
doi: 10.1090/S0002-9939-1980-0553381-X. |
[25] |
M. Falcone, Numerical methods for differential games via PDEs,, Int. Game Theor. Rev., 8 (2006), 231.
doi: 10.1142/S0219198906000886. |
[26] |
M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations,, Numer. Math., 67 (1994), 315.
doi: 10.1007/s002110050031. |
[27] |
M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods,, J. Comp. Phys., 175 (2002), 559.
doi: 10.1006/jcph.2001.6954. |
[28] |
M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014).
doi: 10.1137/1.9781611973051. |
[29] |
R. Ferretti, Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers,, SIAM J. Numer. Anal., 40 (2002), 2240.
doi: 10.1137/S0036142901388378. |
[30] |
B. D. Froese and A. M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation,, SIAM J. Numer. Anal., 51 (2013), 423.
doi: 10.1137/120875065. |
[31] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, volume 118 of Applied Mathematical Sciences,, Springer-Verlag, (1996).
doi: 10.1007/978-1-4612-0713-9. |
[32] |
L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319.
doi: 10.1007/s002110050241. |
[33] |
L. Grüne, M. Kato and W. Semmler, Solving ecological management problems using dynamic programming,, J. Econ. Behav. Organ., 57 (2005), 448.
doi: 10.1016/j.jebo.2005.04.002. |
[34] |
A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III,, J. Comput. Phys., 71 (1987), 231.
doi: 10.1016/0021-9991(87)90031-3. |
[35] |
A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I,, SIAM J. Numer. Anal., 24 (1987), 279.
doi: 10.1137/0724022. |
[36] |
A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes,, Appl. Numer. Math., 2 (1986), 347.
doi: 10.1016/0168-9274(86)90039-5. |
[37] |
P. Hoch and O. Pironneau, A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows,, C. R. Math. Acad. Sci. Paris, 342 (2006), 151.
doi: 10.1016/j.crma.2005.11.007. |
[38] |
C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations,, SIAM J. Sci. Comput., 21 (1999), 666.
doi: 10.1137/S1064827598337282. |
[39] |
G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,, J. Comput. Phys., 126 (1996), 202.
doi: 10.1006/jcph.1996.0130. |
[40] |
F. Li and C.-W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations,, Appl. Math. Lett., 18 (2005), 1204.
doi: 10.1016/j.aml.2004.10.009. |
[41] |
P. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations,, Num. Math., 69 (1995), 441.
doi: 10.1007/s002110050102. |
[42] |
X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes,, J. Comput. Phys., 115 (1994), 200.
doi: 10.1006/jcph.1994.1187. |
[43] |
S. Osher, Convergence of generalized MUSCL schemes,, SIAM J. Numer. Anal., 22 (1985), 947.
doi: 10.1137/0722057. |
[44] |
B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method,, J. Comput. Phys., 135 (1997), 227.
doi: 10.1006/jcph.1997.5757. |
[45] |
Y.-T. Zhang and C.-W. Shu, High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes,, SIAM J. Sci. Comput., 24 (2002), 1005.
doi: 10.1137/S1064827501396798. |
[1] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[2] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[3] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[4] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[5] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[6] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[7] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[10] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[11] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[12] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[13] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[14] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[15] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[16] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[17] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[18] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[19] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[20] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]