• Previous Article
    Integrability methods in the time minimal coherence transfer for Ising chains of three spins
  • DCDS Home
  • This Issue
  • Next Article
    Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
September  2015, 35(9): 4071-4094. doi: 10.3934/dcds.2015.35.4071

(Un)conditional consensus emergence under perturbed and decentralized feedback controls

1. 

Technische Universität München, Fakultät Mathematik, Boltzmannstraße 3, D-85748 Garching, Germany

2. 

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz

Received  April 2014 Revised  September 2014 Published  April 2015

We study the problem of consensus emergence in multi-agent systems via external feedback controllers. We consider a set of agents interacting with dynamics given by a Cucker-Smale type of model, and study its consensus stabilization by means of centralized and decentralized control configurations. We present a characterization of consensus emergence for systems with different feedback structures, such as leader-based configurations, perturbed information feedback, and feedback computed upon spatially confined information. We characterize consensus emergence for this latter design as a parameter-dependent transition regime between self-regulation and centralized feedback stabilization. Numerical experiments illustrate the different features of the proposed designs.
Citation: Mattia Bongini, Massimo Fornasier, Dante Kalise. (Un)conditional consensus emergence under perturbed and decentralized feedback controls. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4071-4094. doi: 10.3934/dcds.2015.35.4071
References:
[1]

L. Bakule, Decentralized control: An overview,, Annu. Rev. Control, 32 (2008), 87.  doi: 10.1016/j.arcontrol.2008.03.004.  Google Scholar

[2]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[3]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse Stabilization and Control of Alignment Models,, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 521.  doi: 10.1142/S0218202515400059.  Google Scholar

[4]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming,, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, (2010), 297.  doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[5]

F. Cucker and C. Huepe, Flocking with informed agents,, MathS In Action, 1 (2008), 1.  doi: 10.5802/msia.1.  Google Scholar

[6]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[7]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[8]

A. Filipov, Differential Equations with Discontinuous Righthand Sides,, Volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[9]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM, 20 (2014), 1123.  doi: 10.1051/cocv/2014009.  Google Scholar

[10]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the cucker-smale-type model with the rayleigh friction,, J. Phys. A: Math. Theor.l, 43 (2010).  doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[11]

S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[12]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, J. Artif. Soc. Soc. Simulat., 5 (2002), 1.   Google Scholar

[13]

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks,, Springer, (2013).  doi: 10.1007/978-1-4471-4147-1.  Google Scholar

[14]

R. M. Murray, Recent research in cooperative control of multivehicle systems,, J. Dyn. Syst. Meas. Control , 129 (2007), 571.  doi: 10.1115/1.2766721.  Google Scholar

[15]

R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[16]

A. A. Peters, R. H. Middleton and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays,, Automatica, 50 (2014), 64.  doi: 10.1016/j.automatica.2013.09.034.  Google Scholar

[17]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, SIGGRAPH Comput. Graph., 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[18]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

L. Bakule, Decentralized control: An overview,, Annu. Rev. Control, 32 (2008), 87.  doi: 10.1016/j.arcontrol.2008.03.004.  Google Scholar

[2]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[3]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse Stabilization and Control of Alignment Models,, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 521.  doi: 10.1142/S0218202515400059.  Google Scholar

[4]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming,, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, (2010), 297.  doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[5]

F. Cucker and C. Huepe, Flocking with informed agents,, MathS In Action, 1 (2008), 1.  doi: 10.5802/msia.1.  Google Scholar

[6]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[7]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[8]

A. Filipov, Differential Equations with Discontinuous Righthand Sides,, Volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[9]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM, 20 (2014), 1123.  doi: 10.1051/cocv/2014009.  Google Scholar

[10]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the cucker-smale-type model with the rayleigh friction,, J. Phys. A: Math. Theor.l, 43 (2010).  doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[11]

S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[12]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, J. Artif. Soc. Soc. Simulat., 5 (2002), 1.   Google Scholar

[13]

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks,, Springer, (2013).  doi: 10.1007/978-1-4471-4147-1.  Google Scholar

[14]

R. M. Murray, Recent research in cooperative control of multivehicle systems,, J. Dyn. Syst. Meas. Control , 129 (2007), 571.  doi: 10.1115/1.2766721.  Google Scholar

[15]

R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[16]

A. A. Peters, R. H. Middleton and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays,, Automatica, 50 (2014), 64.  doi: 10.1016/j.automatica.2013.09.034.  Google Scholar

[17]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, SIGGRAPH Comput. Graph., 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[18]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[2]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[5]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[6]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[7]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[8]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[9]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[10]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[11]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[12]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[13]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[14]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[17]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[20]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]