September  2015, 35(9): 4095-4114. doi: 10.3934/dcds.2015.35.4095

Integrability methods in the time minimal coherence transfer for Ising chains of three spins

1. 

Institut de mathématiques de Bourgogne, UMR 5584 CNRS Université de Bourgogne, Faculté des Sciences Mirande 9 avenue Alain Savary, France, France, France

Received  April 2014 Revised  October 2014 Published  April 2015

The objective of this article is to analyze the integrability properties of extremal solutions of Pontryagin Maximum Principle in the time minimal control of a linear spin system with Ising coupling in relation with conjugate and cut loci computations. Restricting to the case of three spins, the problem is equivalent to analyze a family of almost-Riemannian metrics on the sphere $S^{2}$, with Grushin equatorial singularity. The problem can be lifted into a SR-invariant problem on $SO(3)$, this leads to a complete understanding of the geometry of the problem and to an explicit parametrization of the extremals using an appropriate chart as well as elliptic functions. This approach is compared with the direct analysis of the Liouville metrics on the sphere where the parametrization of the extremals is obtained by computing a Liouville normal form. Finally, an algebraic approach is presented in the framework of the application of differential Galois theory to integrability.
Citation: Bernard Bonnard, Thierry Combot, Lionel Jassionnesse. Integrability methods in the time minimal coherence transfer for Ising chains of three spins. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4095-4114. doi: 10.3934/dcds.2015.35.4095
References:
[1]

Discrete Contin. Dyn. Syst., 20 (2008), 801-822. doi: 10.3934/dcds.2008.20.801.  Google Scholar

[2]

Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[3]

Cours Spécialisés [Specialized Courses], 8. Société Mathématique de France, Paris; EDP Sciences, Les Ulis, 2001. viii+170 pp.  Google Scholar

[4]

American society colloquium publications, vol. IX, 1927. Google Scholar

[5]

Monographs in contemporary mathematrics, Kluwer Academic, 2000. doi: 10.1007/978-1-4615-4307-7.  Google Scholar

[6]

Ann. Mat. Pura Appl., 193 (2014), 1353-1382. doi: 10.1007/s10231-013-0333-y.  Google Scholar

[7]

Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series, 5 (2014), 53-72. doi: 10.1007/978-3-319-02132-4_4.  Google Scholar

[8]

ESAIM Control Optim. Calc. Var., 20 (2014), 864-893. doi: 10.1051/cocv/2013087.  Google Scholar

[9]

Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990. doi: 10.3934/dcdsb.2005.5.957.  Google Scholar

[10]

Manuscripta Math., 114 (2004), 247-264. doi: 10.1007/s00229-004-0455-z.  Google Scholar

[11]

Manuscripta Math., 136 (2011), 115-141. doi: 10.1007/s00229-011-0433-1.  Google Scholar

[12]

Ph.D thesis, Université de Bourgogne, 2014. Google Scholar

[13]

Studies in Advanced Mathematics, 52. Cambridge University Press, Cambridge, 1997. xviii+492 pp.  Google Scholar

[14]

Phys. Rev. A (3), 65 (2002), part A, 032301, 11 pp. doi: 10.1103/PhysRevA.65.032301.  Google Scholar

[15]

J. Symbolic Comput., 2 (1986), 3-43. doi: 10.1016/S0747-7171(86)80010-4.  Google Scholar

[16]

Applied Mathematical Sciences, 80. Springer-Verlag, New York, 1989. xiv+334 pp. doi: 10.1007/978-1-4757-3980-0.  Google Scholar

[17]

(2001) Wiley (686 pages). Google Scholar

[18]

Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220. doi: 10.1090/conm/509/09980.  Google Scholar

[19]

Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962.  Google Scholar

[20]

J. Symbolic Comput., 16 (1993), 9-36. doi: 10.1006/jsco.1993.1032.  Google Scholar

[21]

Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-55750-7.  Google Scholar

[22]

Ph.D thesis, Harvard, 2006.  Google Scholar

[23]

Phys. Rev. A, 77, (2008), 032340. doi: 10.1103/PhysRevA.77.032340.  Google Scholar

show all references

References:
[1]

Discrete Contin. Dyn. Syst., 20 (2008), 801-822. doi: 10.3934/dcds.2008.20.801.  Google Scholar

[2]

Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[3]

Cours Spécialisés [Specialized Courses], 8. Société Mathématique de France, Paris; EDP Sciences, Les Ulis, 2001. viii+170 pp.  Google Scholar

[4]

American society colloquium publications, vol. IX, 1927. Google Scholar

[5]

Monographs in contemporary mathematrics, Kluwer Academic, 2000. doi: 10.1007/978-1-4615-4307-7.  Google Scholar

[6]

Ann. Mat. Pura Appl., 193 (2014), 1353-1382. doi: 10.1007/s10231-013-0333-y.  Google Scholar

[7]

Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series, 5 (2014), 53-72. doi: 10.1007/978-3-319-02132-4_4.  Google Scholar

[8]

ESAIM Control Optim. Calc. Var., 20 (2014), 864-893. doi: 10.1051/cocv/2013087.  Google Scholar

[9]

Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990. doi: 10.3934/dcdsb.2005.5.957.  Google Scholar

[10]

Manuscripta Math., 114 (2004), 247-264. doi: 10.1007/s00229-004-0455-z.  Google Scholar

[11]

Manuscripta Math., 136 (2011), 115-141. doi: 10.1007/s00229-011-0433-1.  Google Scholar

[12]

Ph.D thesis, Université de Bourgogne, 2014. Google Scholar

[13]

Studies in Advanced Mathematics, 52. Cambridge University Press, Cambridge, 1997. xviii+492 pp.  Google Scholar

[14]

Phys. Rev. A (3), 65 (2002), part A, 032301, 11 pp. doi: 10.1103/PhysRevA.65.032301.  Google Scholar

[15]

J. Symbolic Comput., 2 (1986), 3-43. doi: 10.1016/S0747-7171(86)80010-4.  Google Scholar

[16]

Applied Mathematical Sciences, 80. Springer-Verlag, New York, 1989. xiv+334 pp. doi: 10.1007/978-1-4757-3980-0.  Google Scholar

[17]

(2001) Wiley (686 pages). Google Scholar

[18]

Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220. doi: 10.1090/conm/509/09980.  Google Scholar

[19]

Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962.  Google Scholar

[20]

J. Symbolic Comput., 16 (1993), 9-36. doi: 10.1006/jsco.1993.1032.  Google Scholar

[21]

Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-55750-7.  Google Scholar

[22]

Ph.D thesis, Harvard, 2006.  Google Scholar

[23]

Phys. Rev. A, 77, (2008), 032340. doi: 10.1103/PhysRevA.77.032340.  Google Scholar

[1]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[3]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[6]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[7]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[10]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[11]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[12]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[13]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[14]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[15]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[16]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[17]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[18]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[19]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[20]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

[Back to Top]