-
Previous Article
Local properties of almost-Riemannian structures in dimension 3
- DCDS Home
- This Issue
-
Next Article
(Un)conditional consensus emergence under perturbed and decentralized feedback controls
Integrability methods in the time minimal coherence transfer for Ising chains of three spins
1. | Institut de mathématiques de Bourgogne, UMR 5584 CNRS Université de Bourgogne, Faculté des Sciences Mirande 9 avenue Alain Savary, France, France, France |
References:
[1] |
Discrete Contin. Dyn. Syst., 20 (2008), 801-822.
doi: 10.3934/dcds.2008.20.801. |
[2] |
Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
Cours Spécialisés [Specialized Courses], 8. Société Mathématique de France, Paris; EDP Sciences, Les Ulis, 2001. viii+170 pp. |
[4] |
American society colloquium publications, vol. IX, 1927. Google Scholar |
[5] |
Monographs in contemporary mathematrics, Kluwer Academic, 2000.
doi: 10.1007/978-1-4615-4307-7. |
[6] |
Ann. Mat. Pura Appl., 193 (2014), 1353-1382.
doi: 10.1007/s10231-013-0333-y. |
[7] |
Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series, 5 (2014), 53-72.
doi: 10.1007/978-3-319-02132-4_4. |
[8] |
ESAIM Control Optim. Calc. Var., 20 (2014), 864-893.
doi: 10.1051/cocv/2013087. |
[9] |
Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990.
doi: 10.3934/dcdsb.2005.5.957. |
[10] |
Manuscripta Math., 114 (2004), 247-264.
doi: 10.1007/s00229-004-0455-z. |
[11] |
Manuscripta Math., 136 (2011), 115-141.
doi: 10.1007/s00229-011-0433-1. |
[12] |
Ph.D thesis, Université de Bourgogne, 2014. Google Scholar |
[13] |
Studies in Advanced Mathematics, 52. Cambridge University Press, Cambridge, 1997. xviii+492 pp. |
[14] |
Phys. Rev. A (3), 65 (2002), part A, 032301, 11 pp.
doi: 10.1103/PhysRevA.65.032301. |
[15] |
J. Symbolic Comput., 2 (1986), 3-43.
doi: 10.1016/S0747-7171(86)80010-4. |
[16] |
Applied Mathematical Sciences, 80. Springer-Verlag, New York, 1989. xiv+334 pp.
doi: 10.1007/978-1-4757-3980-0. |
[17] |
(2001) Wiley (686 pages). Google Scholar |
[18] |
Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220.
doi: 10.1090/conm/509/09980. |
[19] |
Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962. |
[20] |
J. Symbolic Comput., 16 (1993), 9-36.
doi: 10.1006/jsco.1993.1032. |
[21] |
Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-55750-7. |
[22] |
Ph.D thesis, Harvard, 2006. |
[23] |
Phys. Rev. A, 77, (2008), 032340.
doi: 10.1103/PhysRevA.77.032340. |
show all references
References:
[1] |
Discrete Contin. Dyn. Syst., 20 (2008), 801-822.
doi: 10.3934/dcds.2008.20.801. |
[2] |
Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
Cours Spécialisés [Specialized Courses], 8. Société Mathématique de France, Paris; EDP Sciences, Les Ulis, 2001. viii+170 pp. |
[4] |
American society colloquium publications, vol. IX, 1927. Google Scholar |
[5] |
Monographs in contemporary mathematrics, Kluwer Academic, 2000.
doi: 10.1007/978-1-4615-4307-7. |
[6] |
Ann. Mat. Pura Appl., 193 (2014), 1353-1382.
doi: 10.1007/s10231-013-0333-y. |
[7] |
Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series, 5 (2014), 53-72.
doi: 10.1007/978-3-319-02132-4_4. |
[8] |
ESAIM Control Optim. Calc. Var., 20 (2014), 864-893.
doi: 10.1051/cocv/2013087. |
[9] |
Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990.
doi: 10.3934/dcdsb.2005.5.957. |
[10] |
Manuscripta Math., 114 (2004), 247-264.
doi: 10.1007/s00229-004-0455-z. |
[11] |
Manuscripta Math., 136 (2011), 115-141.
doi: 10.1007/s00229-011-0433-1. |
[12] |
Ph.D thesis, Université de Bourgogne, 2014. Google Scholar |
[13] |
Studies in Advanced Mathematics, 52. Cambridge University Press, Cambridge, 1997. xviii+492 pp. |
[14] |
Phys. Rev. A (3), 65 (2002), part A, 032301, 11 pp.
doi: 10.1103/PhysRevA.65.032301. |
[15] |
J. Symbolic Comput., 2 (1986), 3-43.
doi: 10.1016/S0747-7171(86)80010-4. |
[16] |
Applied Mathematical Sciences, 80. Springer-Verlag, New York, 1989. xiv+334 pp.
doi: 10.1007/978-1-4757-3980-0. |
[17] |
(2001) Wiley (686 pages). Google Scholar |
[18] |
Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220.
doi: 10.1090/conm/509/09980. |
[19] |
Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962. |
[20] |
J. Symbolic Comput., 16 (1993), 9-36.
doi: 10.1006/jsco.1993.1032. |
[21] |
Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-55750-7. |
[22] |
Ph.D thesis, Harvard, 2006. |
[23] |
Phys. Rev. A, 77, (2008), 032340.
doi: 10.1103/PhysRevA.77.032340. |
[1] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[2] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[3] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[6] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[7] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[10] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[11] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[12] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
[13] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[14] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[15] |
Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031 |
[16] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[17] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[18] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[19] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[20] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]