2015, 35(9): 4173-4192. doi: 10.3934/dcds.2015.35.4173

A model problem for Mean Field Games on networks

1. 

"Sapienza" Università di Roma, Dip. di Scienze di Base e Applicate per l'Ingegneria, via Scarpa 16, 0161 Roma

2. 

"Sapienza" Università di Roma, Dipartimento di Matematica, P.le A. Moro 5, 00185 Roma, Italy

3. 

Dipartimento di Matematica Pura ed Applicata, Università di Padova, via Trieste 63, 35121 Padova

Received  March 2014 Revised  September 2014 Published  April 2015

In [14], Guéant, Lasry and Lions considered the model problem ``What time does meeting start?'' as a prototype for a general class of optimization problems with a continuum of players, called Mean Field Games problems. In this paper we consider a similar model, but with the dynamics of the agents defined on a network. We discuss appropriate transition conditions at the vertices which give a well posed problem and we present some numerical results.
Citation: Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173
References:
[1]

Y. Achdou, Finite difference methods for mean field games,, in Hamilton-Jacobi Equations: Approximations, (2013), 1. doi: 10.1007/978-3-642-36433-4_1.

[2]

J. von Below, Classical solvability of linear parabolic equations on networks,, J. Differential Equations, 72 (1988), 316. doi: 10.1016/0022-0396(88)90158-1.

[3]

J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion,, Comm. Partial Differential Equations, 21 (1996), 255. doi: 10.1080/03605309608821184.

[4]

M. Burger, M. Di Francesco, P. Markowich and M.-T. Wolfram, Mean field games with linear mobilities in pedestrian dynamics,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311. doi: 10.3934/dcdsb.2014.19.1311.

[5]

F. Camilli, C. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equation on networks,, J. Differential Equations, 254 (2013), 4122. doi: 10.1016/j.jde.2013.02.013.

[6]

P. Cardaliaguet, Notes on Mean Field Games: from P.-L. Lions' lectures at Collège de France,, Lecture Notes given at Tor Vergata, (2010).

[7]

G. M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks,, SIAM J. Math. Anal., 42 (2010), 1761. doi: 10.1137/090771417.

[8]

C. Dogbé, Modeling crowd dynamics by the mean-field limit approach,, Math. Comput. Modelling, 52 (2010), 1506. doi: 10.1016/j.mcm.2010.06.012.

[9]

M. Freidlin and S. J. Sheu, Diffusion processes on graphs: Stochastic differential equations, large deviation principle,, Probab. Theory Related Fields, 116 (2000), 181. doi: 10.1007/PL00008726.

[10]

M. Freidlin and A. Wentzell, Diffusion processes on graphs and the averaging principle,, Ann. Probab., 21 (1993), 2215. doi: 10.1214/aop/1176989018.

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).

[12]

D. Gomes and J. Saude, Mean field games - A brief survey,, Dyn.Games Appl., 4 (2014), 110. doi: 10.1007/s13235-013-0099-2.

[13]

M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusion in networks,, Appl. Math. Optim., 55 (2007), 219. doi: 10.1007/s00245-006-0887-9.

[14]

O. Guéant, J-M. Lasry and P-L. Lions, Mean field games and applications,, in Paris-Princeton Lectures on Mathematical Finance 2010, (2011), 205. doi: 10.1007/978-3-642-14660-2_3.

[15]

O. Guéant, Mean field games equations with quadratic Hamiltonian: A specific approach,, M3AS Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500224.

[16]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society, (1968).

[17]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8.

[18]

D. Mugnolo, Gaussian estimates for a heat equation on a network,, Netw. Het. Media, 2 (2007), 55. doi: 10.3934/nhm.2007.2.55.

[19]

D. Mugnolo and S. Romanelli, Dynamic and generalized Wentzell node conditions for network equations,, Math. Methods Appl. Sci., 30 (2007), 681. doi: 10.1002/mma.805.

[20]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow,, Arch. Ration. Mech. Anal., 199 (2011), 707. doi: 10.1007/s00205-010-0366-y.

show all references

References:
[1]

Y. Achdou, Finite difference methods for mean field games,, in Hamilton-Jacobi Equations: Approximations, (2013), 1. doi: 10.1007/978-3-642-36433-4_1.

[2]

J. von Below, Classical solvability of linear parabolic equations on networks,, J. Differential Equations, 72 (1988), 316. doi: 10.1016/0022-0396(88)90158-1.

[3]

J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion,, Comm. Partial Differential Equations, 21 (1996), 255. doi: 10.1080/03605309608821184.

[4]

M. Burger, M. Di Francesco, P. Markowich and M.-T. Wolfram, Mean field games with linear mobilities in pedestrian dynamics,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311. doi: 10.3934/dcdsb.2014.19.1311.

[5]

F. Camilli, C. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equation on networks,, J. Differential Equations, 254 (2013), 4122. doi: 10.1016/j.jde.2013.02.013.

[6]

P. Cardaliaguet, Notes on Mean Field Games: from P.-L. Lions' lectures at Collège de France,, Lecture Notes given at Tor Vergata, (2010).

[7]

G. M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks,, SIAM J. Math. Anal., 42 (2010), 1761. doi: 10.1137/090771417.

[8]

C. Dogbé, Modeling crowd dynamics by the mean-field limit approach,, Math. Comput. Modelling, 52 (2010), 1506. doi: 10.1016/j.mcm.2010.06.012.

[9]

M. Freidlin and S. J. Sheu, Diffusion processes on graphs: Stochastic differential equations, large deviation principle,, Probab. Theory Related Fields, 116 (2000), 181. doi: 10.1007/PL00008726.

[10]

M. Freidlin and A. Wentzell, Diffusion processes on graphs and the averaging principle,, Ann. Probab., 21 (1993), 2215. doi: 10.1214/aop/1176989018.

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).

[12]

D. Gomes and J. Saude, Mean field games - A brief survey,, Dyn.Games Appl., 4 (2014), 110. doi: 10.1007/s13235-013-0099-2.

[13]

M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusion in networks,, Appl. Math. Optim., 55 (2007), 219. doi: 10.1007/s00245-006-0887-9.

[14]

O. Guéant, J-M. Lasry and P-L. Lions, Mean field games and applications,, in Paris-Princeton Lectures on Mathematical Finance 2010, (2011), 205. doi: 10.1007/978-3-642-14660-2_3.

[15]

O. Guéant, Mean field games equations with quadratic Hamiltonian: A specific approach,, M3AS Math. Models Methods Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500224.

[16]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type,, American Mathematical Society, (1968).

[17]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8.

[18]

D. Mugnolo, Gaussian estimates for a heat equation on a network,, Netw. Het. Media, 2 (2007), 55. doi: 10.3934/nhm.2007.2.55.

[19]

D. Mugnolo and S. Romanelli, Dynamic and generalized Wentzell node conditions for network equations,, Math. Methods Appl. Sci., 30 (2007), 681. doi: 10.1002/mma.805.

[20]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow,, Arch. Ration. Mech. Anal., 199 (2011), 707. doi: 10.1007/s00205-010-0366-y.

[1]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[2]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[3]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[4]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[5]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[6]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[7]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[8]

Yves Achdou, Victor Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks & Heterogeneous Media, 2012, 7 (2) : 197-217. doi: 10.3934/nhm.2012.7.197

[9]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[10]

Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

[11]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[12]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[13]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[14]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[15]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[16]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[17]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[18]

Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks & Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279

[19]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[20]

Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018027

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (3)

[Back to Top]