-
Previous Article
Topological properties of sectional-Anosov flows
- DCDS Home
- This Issue
- Next Article
On the set of periods of sigma maps of degree 1
1. | Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona |
2. | Laboratoire de Mathématiques, CNRS UMR 8628, Bâtiment 425, Université Paris-Sud 11, 91405 Orsay cedex, France |
References:
[1] |
Topology, 36 (1997), 1123-1153.
doi: 10.1016/S0040-9383(96)00039-0. |
[2] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311-341.
doi: 10.1142/S021812740300656X. |
[3] |
Ergodic Theory Dynam. Systems, 25 (2005), 1373-1400.
doi: 10.1017/S0143385704000896. |
[4] |
Discrete Contin. Dyn. Syst., 20 (2008), 511-541. |
[5] |
Ann. Inst. Fourier (Grenoble), 55 (2005), 2375-2398.
doi: 10.5802/aif.2164. |
[6] |
Trans. Amer. Math. Soc., 313 (1989), 475-538.
doi: 10.2307/2001417. |
[7] |
2nd edition, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.
doi: 10.1142/4205. |
[8] |
Ann. Inst. Fourier (Grenoble), 58 (2008), 1233-1294, URL http://aif.cedram.org/item?id=AIF_2008__58_4_1233_0.
doi: 10.5802/aif.2384. |
[9] |
Proc. Amer. Math. Soc., 138 (2010), 3211-3217.
doi: 10.1090/S0002-9939-10-10332-3. |
[10] |
Ergodic Theory Dynam. Systems, 11 (1991), 249-271.
doi: 10.1017/S0143385700006131. |
[11] |
Ergodic Theory Dynam. Systems, 15 (1995), 239-246.
doi: 10.1017/S014338570000835X. |
[12] |
Discrete Contin. Dyn. Syst., 14 (2006), 399-408.
doi: 10.3934/dcds.2006.14.399. |
[13] |
Proc. Amer. Math. Soc., 82 (1981), 481-486.
doi: 10.1090/S0002-9939-1981-0612745-7. |
[14] |
in Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., Vol. 819, Springer, Berlin, 1980, 18-34. |
[15] |
Math. Proc. Cambridge Philos. Soc., 89 (1981), 107-111.
doi: 10.1017/S0305004100057984. |
[16] |
Trans. Amer. Math. Soc., 347 (1995), 4899-4942.
doi: 10.2307/2155068. |
[17] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1743-1754; On the extension of Sharkovskiĭ's theorem to connected graphs with non-positive Euler characteristic, in Proceedings of the Conference "Thirty Years after Sharkovskiĭ's Theorem: New Perspectives'' (Murcia, 1994), 5 (1995), 1395-1405.
doi: 10.1142/S0218127495001071. |
[18] |
(Spanish) Master thesis, Universidad National de Ingeniería, Peru, 2011. Available from: http://cybertesis.uni.edu.pe/bitstream/uni/277/1/malaga_sa.pdf. Google Scholar |
[19] |
Ergodic Theory Dynamical Systems, 2 (1982), 221-227 (1983). |
[20] |
Ukrain. Mat. Ž., 16 (1964), 61-71. |
[21] |
Proceedings of the Conference "Thirty Years after Sharkovskiĭ's Theorem: New Perspectives'' (Murcia, 1994), Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273; Translated from the Russian [Ukrain. Mat. Zh., 16 (1964), 61-71; MR0159905] by J. Tolosa.
doi: 10.1142/S0218127495000934. |
[22] |
Comm. Math. Phys., 54 (1977), 237-248.
doi: 10.1007/BF01614086. |
show all references
References:
[1] |
Topology, 36 (1997), 1123-1153.
doi: 10.1016/S0040-9383(96)00039-0. |
[2] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311-341.
doi: 10.1142/S021812740300656X. |
[3] |
Ergodic Theory Dynam. Systems, 25 (2005), 1373-1400.
doi: 10.1017/S0143385704000896. |
[4] |
Discrete Contin. Dyn. Syst., 20 (2008), 511-541. |
[5] |
Ann. Inst. Fourier (Grenoble), 55 (2005), 2375-2398.
doi: 10.5802/aif.2164. |
[6] |
Trans. Amer. Math. Soc., 313 (1989), 475-538.
doi: 10.2307/2001417. |
[7] |
2nd edition, World Scientific Publishing Co. Inc., River Edge, NJ, 2000.
doi: 10.1142/4205. |
[8] |
Ann. Inst. Fourier (Grenoble), 58 (2008), 1233-1294, URL http://aif.cedram.org/item?id=AIF_2008__58_4_1233_0.
doi: 10.5802/aif.2384. |
[9] |
Proc. Amer. Math. Soc., 138 (2010), 3211-3217.
doi: 10.1090/S0002-9939-10-10332-3. |
[10] |
Ergodic Theory Dynam. Systems, 11 (1991), 249-271.
doi: 10.1017/S0143385700006131. |
[11] |
Ergodic Theory Dynam. Systems, 15 (1995), 239-246.
doi: 10.1017/S014338570000835X. |
[12] |
Discrete Contin. Dyn. Syst., 14 (2006), 399-408.
doi: 10.3934/dcds.2006.14.399. |
[13] |
Proc. Amer. Math. Soc., 82 (1981), 481-486.
doi: 10.1090/S0002-9939-1981-0612745-7. |
[14] |
in Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., Vol. 819, Springer, Berlin, 1980, 18-34. |
[15] |
Math. Proc. Cambridge Philos. Soc., 89 (1981), 107-111.
doi: 10.1017/S0305004100057984. |
[16] |
Trans. Amer. Math. Soc., 347 (1995), 4899-4942.
doi: 10.2307/2155068. |
[17] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1743-1754; On the extension of Sharkovskiĭ's theorem to connected graphs with non-positive Euler characteristic, in Proceedings of the Conference "Thirty Years after Sharkovskiĭ's Theorem: New Perspectives'' (Murcia, 1994), 5 (1995), 1395-1405.
doi: 10.1142/S0218127495001071. |
[18] |
(Spanish) Master thesis, Universidad National de Ingeniería, Peru, 2011. Available from: http://cybertesis.uni.edu.pe/bitstream/uni/277/1/malaga_sa.pdf. Google Scholar |
[19] |
Ergodic Theory Dynamical Systems, 2 (1982), 221-227 (1983). |
[20] |
Ukrain. Mat. Ž., 16 (1964), 61-71. |
[21] |
Proceedings of the Conference "Thirty Years after Sharkovskiĭ's Theorem: New Perspectives'' (Murcia, 1994), Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273; Translated from the Russian [Ukrain. Mat. Zh., 16 (1964), 61-71; MR0159905] by J. Tolosa.
doi: 10.1142/S0218127495000934. |
[22] |
Comm. Math. Phys., 54 (1977), 237-248.
doi: 10.1007/BF01614086. |
[1] |
Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021009 |
[2] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[3] |
Daniel Amin, Mikael Vejdemo-Johansson. Intrinsic disease maps using persistent cohomology. Foundations of Data Science, 2021 doi: 10.3934/fods.2021008 |
[4] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[5] |
Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021067 |
[6] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[7] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[8] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[9] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[10] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3781-3796. doi: 10.3934/dcds.2021016 |
[11] |
Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021046 |
[12] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[13] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[14] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[15] |
Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021080 |
[16] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[17] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[18] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[19] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[20] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]