-
Previous Article
Transitive sofic spacing shifts
- DCDS Home
- This Issue
-
Next Article
On the set of periods of sigma maps of degree 1
Topological properties of sectional-Anosov flows
1. | Departamento de Matemática, Universidade Federal de Viçosa, Viçosa-MG, Brazil, Brazil |
2. | Departamento de Matemática, Universidade Federal do Rio de Janeiro, RJ, Brazil |
References:
[1] |
S. Bautista and C. A. Morales, Existence of periodic orbits for singular-hyperbolic sets,, Mosc. Math. J., 6 (2006), 265.
|
[2] |
J. S. Birman and R. F. Williams, Knotted periodic orbits in dynamical system. II. Knot holders for fibered knots,, in Low-Dimensional Topology (San Francisco, (1981), 1.
doi: 10.1090/conm/020/718132. |
[3] |
C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883.
doi: 10.1016/S0764-4442(97)80131-0. |
[4] |
H. G. Bothe, How hyperbolic attractors determine their basins,, Nonlinearity, 9 (1996), 1173.
doi: 10.1088/0951-7715/9/5/006. |
[5] |
H. G. Bothe, Strange attractors with topologically simple basins,, Topology Appl., 114 (2001), 1.
doi: 10.1016/S0166-8641(00)00034-1. |
[6] |
C. Camacho and A. Lins Neto, Geometric Theory of Foliations,, Birkhäuser Boston, (1985).
doi: 10.1007/978-1-4612-5292-4. |
[7] |
J. Franks and B. Williams, Anomalous Anosov flows,, in Global Theory of Dynamical Systems (Proc. Internat. Conf., (1979), 158.
|
[8] |
J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59.
|
[9] |
G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B,, Vieweg, (1986).
doi: 10.1007/978-3-322-90115-6. |
[10] |
J. Hempel, 3-Manifolds,, Ann. of Math. Studies, (1976).
|
[11] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).
|
[12] |
R. Metzger and C. A. Morales, Sectional-hyperbolic system,, Ergod. Th. Dynam. Sys., 28 (2008), 1587.
doi: 10.1017/S0143385707000995. |
[13] |
J. Milnor, Topology from the Differentiable Viewpoint,, Based on notes by David W. Weaver The University Press of Virginia, (1965).
|
[14] |
C. A. Morales, Sectional-Anosov flows,, Monatsh. Math., 159 (2010), 253.
doi: 10.1007/s00605-008-0078-7. |
[15] |
C. A. Morales, Incompressibility of tori transverse to Axiom A flows,, Proc. Amer. Math. Soc., 136 (2008), 4349.
doi: 10.1090/S0002-9939-08-09409-4. |
[16] |
C. A. Morales, Singular-hyperbolic attractors with handlebody basins,, J. Dyn. Control Syst., 13 (2007), 15.
doi: 10.1007/s10883-006-9000-6. |
[17] |
C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems,, Proc. Amer. Math. Soc., 127 (1999), 3393.
doi: 10.1090/S0002-9939-99-04936-9. |
[18] |
S. Novikov, Topology of Foliations,, Trudy Mosk. Mat. Obbsh., 14 (1965), 248.
|
[19] |
J. F. Plante and W. P. Thurston, Anosov flows and the fundamental group,, Topology, 11 (1972), 147.
doi: 10.1016/0040-9383(72)90002-X. |
[20] |
J. E. Reis, Infinidade de órbitas periódicas para fluxos seccional-Anosov,, Tese (doutorado) - UFRJ/ IM/ Programa de Pós- Graduação em Matemática, (2011). Google Scholar |
[21] |
B. Scárdua and J. Seade, Codimension one foliations with Bott-Morse singularities. I,, J. Differential Geom., 83 (2009), 189.
|
[22] |
T. Sodero, Sectional-Anosov flows on certain compact 3-manifolds,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 439.
doi: 10.1007/s00574-011-0024-5. |
[23] |
T. Vivier, Projective hyperbolicity and fixed points,, Ergodic Theory Dynam. Systems, 26 (2006), 923.
doi: 10.1017/S0143385705000581. |
show all references
References:
[1] |
S. Bautista and C. A. Morales, Existence of periodic orbits for singular-hyperbolic sets,, Mosc. Math. J., 6 (2006), 265.
|
[2] |
J. S. Birman and R. F. Williams, Knotted periodic orbits in dynamical system. II. Knot holders for fibered knots,, in Low-Dimensional Topology (San Francisco, (1981), 1.
doi: 10.1090/conm/020/718132. |
[3] |
C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883.
doi: 10.1016/S0764-4442(97)80131-0. |
[4] |
H. G. Bothe, How hyperbolic attractors determine their basins,, Nonlinearity, 9 (1996), 1173.
doi: 10.1088/0951-7715/9/5/006. |
[5] |
H. G. Bothe, Strange attractors with topologically simple basins,, Topology Appl., 114 (2001), 1.
doi: 10.1016/S0166-8641(00)00034-1. |
[6] |
C. Camacho and A. Lins Neto, Geometric Theory of Foliations,, Birkhäuser Boston, (1985).
doi: 10.1007/978-1-4612-5292-4. |
[7] |
J. Franks and B. Williams, Anomalous Anosov flows,, in Global Theory of Dynamical Systems (Proc. Internat. Conf., (1979), 158.
|
[8] |
J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59.
|
[9] |
G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B,, Vieweg, (1986).
doi: 10.1007/978-3-322-90115-6. |
[10] |
J. Hempel, 3-Manifolds,, Ann. of Math. Studies, (1976).
|
[11] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).
|
[12] |
R. Metzger and C. A. Morales, Sectional-hyperbolic system,, Ergod. Th. Dynam. Sys., 28 (2008), 1587.
doi: 10.1017/S0143385707000995. |
[13] |
J. Milnor, Topology from the Differentiable Viewpoint,, Based on notes by David W. Weaver The University Press of Virginia, (1965).
|
[14] |
C. A. Morales, Sectional-Anosov flows,, Monatsh. Math., 159 (2010), 253.
doi: 10.1007/s00605-008-0078-7. |
[15] |
C. A. Morales, Incompressibility of tori transverse to Axiom A flows,, Proc. Amer. Math. Soc., 136 (2008), 4349.
doi: 10.1090/S0002-9939-08-09409-4. |
[16] |
C. A. Morales, Singular-hyperbolic attractors with handlebody basins,, J. Dyn. Control Syst., 13 (2007), 15.
doi: 10.1007/s10883-006-9000-6. |
[17] |
C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems,, Proc. Amer. Math. Soc., 127 (1999), 3393.
doi: 10.1090/S0002-9939-99-04936-9. |
[18] |
S. Novikov, Topology of Foliations,, Trudy Mosk. Mat. Obbsh., 14 (1965), 248.
|
[19] |
J. F. Plante and W. P. Thurston, Anosov flows and the fundamental group,, Topology, 11 (1972), 147.
doi: 10.1016/0040-9383(72)90002-X. |
[20] |
J. E. Reis, Infinidade de órbitas periódicas para fluxos seccional-Anosov,, Tese (doutorado) - UFRJ/ IM/ Programa de Pós- Graduação em Matemática, (2011). Google Scholar |
[21] |
B. Scárdua and J. Seade, Codimension one foliations with Bott-Morse singularities. I,, J. Differential Geom., 83 (2009), 189.
|
[22] |
T. Sodero, Sectional-Anosov flows on certain compact 3-manifolds,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 439.
doi: 10.1007/s00574-011-0024-5. |
[23] |
T. Vivier, Projective hyperbolicity and fixed points,, Ergodic Theory Dynam. Systems, 26 (2006), 923.
doi: 10.1017/S0143385705000581. |
[1] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[2] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[3] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[4] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[5] |
M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403 |
[6] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[7] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[8] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[9] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[10] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[11] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[12] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[13] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[14] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[15] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[16] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[17] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[18] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[19] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[20] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]