2015, 35(10): 4735-4741. doi: 10.3934/dcds.2015.35.4735

Topological properties of sectional-Anosov flows

1. 

Departamento de Matemática, Universidade Federal de Viçosa, Viçosa-MG, Brazil, Brazil

2. 

Departamento de Matemática, Universidade Federal do Rio de Janeiro, RJ, Brazil

Received  July 2014 Revised  February 2015 Published  April 2015

We study sectional-Anosov flows on compact $3$-manifolds. First we prove that every periodic orbits represents an infinite order element of the fundamental group outside the strong stable manifolds of the singularities. Next, in the transitive case, we prove that the first Betti number of the manifold is positive, that the number of singularities is given by the Euler characteristic and that every boundary's connected component has nonpositive Euler characteristic. Moreover, there is one component with negative characteristic if and only if the flow has singularities. These results will be used to discuss the existence of transitive sectional-Anosov flows on specific compact 3-manifolds with boundary.
Citation: Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735
References:
[1]

S. Bautista and C. A. Morales, Existence of periodic orbits for singular-hyperbolic sets,, Mosc. Math. J., 6 (2006), 265.

[2]

J. S. Birman and R. F. Williams, Knotted periodic orbits in dynamical system. II. Knot holders for fibered knots,, in Low-Dimensional Topology (San Francisco, (1981), 1. doi: 10.1090/conm/020/718132.

[3]

C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883. doi: 10.1016/S0764-4442(97)80131-0.

[4]

H. G. Bothe, How hyperbolic attractors determine their basins,, Nonlinearity, 9 (1996), 1173. doi: 10.1088/0951-7715/9/5/006.

[5]

H. G. Bothe, Strange attractors with topologically simple basins,, Topology Appl., 114 (2001), 1. doi: 10.1016/S0166-8641(00)00034-1.

[6]

C. Camacho and A. Lins Neto, Geometric Theory of Foliations,, Birkhäuser Boston, (1985). doi: 10.1007/978-1-4612-5292-4.

[7]

J. Franks and B. Williams, Anomalous Anosov flows,, in Global Theory of Dynamical Systems (Proc. Internat. Conf., (1979), 158.

[8]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59.

[9]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B,, Vieweg, (1986). doi: 10.1007/978-3-322-90115-6.

[10]

J. Hempel, 3-Manifolds,, Ann. of Math. Studies, (1976).

[11]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[12]

R. Metzger and C. A. Morales, Sectional-hyperbolic system,, Ergod. Th. Dynam. Sys., 28 (2008), 1587. doi: 10.1017/S0143385707000995.

[13]

J. Milnor, Topology from the Differentiable Viewpoint,, Based on notes by David W. Weaver The University Press of Virginia, (1965).

[14]

C. A. Morales, Sectional-Anosov flows,, Monatsh. Math., 159 (2010), 253. doi: 10.1007/s00605-008-0078-7.

[15]

C. A. Morales, Incompressibility of tori transverse to Axiom A flows,, Proc. Amer. Math. Soc., 136 (2008), 4349. doi: 10.1090/S0002-9939-08-09409-4.

[16]

C. A. Morales, Singular-hyperbolic attractors with handlebody basins,, J. Dyn. Control Syst., 13 (2007), 15. doi: 10.1007/s10883-006-9000-6.

[17]

C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems,, Proc. Amer. Math. Soc., 127 (1999), 3393. doi: 10.1090/S0002-9939-99-04936-9.

[18]

S. Novikov, Topology of Foliations,, Trudy Mosk. Mat. Obbsh., 14 (1965), 248.

[19]

J. F. Plante and W. P. Thurston, Anosov flows and the fundamental group,, Topology, 11 (1972), 147. doi: 10.1016/0040-9383(72)90002-X.

[20]

J. E. Reis, Infinidade de órbitas periódicas para fluxos seccional-Anosov,, Tese (doutorado) - UFRJ/ IM/ Programa de Pós- Graduação em Matemática, (2011).

[21]

B. Scárdua and J. Seade, Codimension one foliations with Bott-Morse singularities. I,, J. Differential Geom., 83 (2009), 189.

[22]

T. Sodero, Sectional-Anosov flows on certain compact 3-manifolds,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 439. doi: 10.1007/s00574-011-0024-5.

[23]

T. Vivier, Projective hyperbolicity and fixed points,, Ergodic Theory Dynam. Systems, 26 (2006), 923. doi: 10.1017/S0143385705000581.

show all references

References:
[1]

S. Bautista and C. A. Morales, Existence of periodic orbits for singular-hyperbolic sets,, Mosc. Math. J., 6 (2006), 265.

[2]

J. S. Birman and R. F. Williams, Knotted periodic orbits in dynamical system. II. Knot holders for fibered knots,, in Low-Dimensional Topology (San Francisco, (1981), 1. doi: 10.1090/conm/020/718132.

[3]

C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883. doi: 10.1016/S0764-4442(97)80131-0.

[4]

H. G. Bothe, How hyperbolic attractors determine their basins,, Nonlinearity, 9 (1996), 1173. doi: 10.1088/0951-7715/9/5/006.

[5]

H. G. Bothe, Strange attractors with topologically simple basins,, Topology Appl., 114 (2001), 1. doi: 10.1016/S0166-8641(00)00034-1.

[6]

C. Camacho and A. Lins Neto, Geometric Theory of Foliations,, Birkhäuser Boston, (1985). doi: 10.1007/978-1-4612-5292-4.

[7]

J. Franks and B. Williams, Anomalous Anosov flows,, in Global Theory of Dynamical Systems (Proc. Internat. Conf., (1979), 158.

[8]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59.

[9]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B,, Vieweg, (1986). doi: 10.1007/978-3-322-90115-6.

[10]

J. Hempel, 3-Manifolds,, Ann. of Math. Studies, (1976).

[11]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[12]

R. Metzger and C. A. Morales, Sectional-hyperbolic system,, Ergod. Th. Dynam. Sys., 28 (2008), 1587. doi: 10.1017/S0143385707000995.

[13]

J. Milnor, Topology from the Differentiable Viewpoint,, Based on notes by David W. Weaver The University Press of Virginia, (1965).

[14]

C. A. Morales, Sectional-Anosov flows,, Monatsh. Math., 159 (2010), 253. doi: 10.1007/s00605-008-0078-7.

[15]

C. A. Morales, Incompressibility of tori transverse to Axiom A flows,, Proc. Amer. Math. Soc., 136 (2008), 4349. doi: 10.1090/S0002-9939-08-09409-4.

[16]

C. A. Morales, Singular-hyperbolic attractors with handlebody basins,, J. Dyn. Control Syst., 13 (2007), 15. doi: 10.1007/s10883-006-9000-6.

[17]

C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems,, Proc. Amer. Math. Soc., 127 (1999), 3393. doi: 10.1090/S0002-9939-99-04936-9.

[18]

S. Novikov, Topology of Foliations,, Trudy Mosk. Mat. Obbsh., 14 (1965), 248.

[19]

J. F. Plante and W. P. Thurston, Anosov flows and the fundamental group,, Topology, 11 (1972), 147. doi: 10.1016/0040-9383(72)90002-X.

[20]

J. E. Reis, Infinidade de órbitas periódicas para fluxos seccional-Anosov,, Tese (doutorado) - UFRJ/ IM/ Programa de Pós- Graduação em Matemática, (2011).

[21]

B. Scárdua and J. Seade, Codimension one foliations with Bott-Morse singularities. I,, J. Differential Geom., 83 (2009), 189.

[22]

T. Sodero, Sectional-Anosov flows on certain compact 3-manifolds,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 439. doi: 10.1007/s00574-011-0024-5.

[23]

T. Vivier, Projective hyperbolicity and fixed points,, Ergodic Theory Dynam. Systems, 26 (2006), 923. doi: 10.1017/S0143385705000581.

[1]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[2]

Ming Li, Shaobo Gan, Lan Wen. Robustly transitive singular sets via approach of an extended linear Poincaré flow. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 239-269. doi: 10.3934/dcds.2005.13.239

[3]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

[4]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[5]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[6]

Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021

[7]

Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631

[8]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[9]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[10]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[11]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[12]

Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098

[13]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks & Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651

[14]

Magnus Aspenberg, Fredrik Ekström, Tomas Persson, Jörg Schmeling. On the asymptotics of the scenery flow. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2797-2815. doi: 10.3934/dcds.2015.35.2797

[15]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[16]

Thomas H. Otway. Compressible flow on manifolds. Conference Publications, 2001, 2001 (Special) : 289-294. doi: 10.3934/proc.2001.2001.289

[17]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[18]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[19]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[20]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

[Back to Top]