October  2015, 35(10): 4743-4764. doi: 10.3934/dcds.2015.35.4743

Transitive sofic spacing shifts

1. 

Department of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia

2. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków

3. 

Department of Mathematics and Statistics, La Trobe University, Bundoora 3086, Australia

Received  May 2014 Revised  February 2015 Published  April 2015

Spacing shifts were introduced by Lau and Zame in the 1970's to provide accessible examples of maps that are weakly mixing but not mixing. In previous papers by the authors and others, it has been observed that the problem of describing when spacing shifts are topologically transitive appears to be quite difficult in general. In the present paper, we give a characterization of sofic spacing shifts and begin to investigate which sofic spacing shifts are topologically transitive. We show that the canonical graph presentation of such a shift has a rather simple form, for which we introduce the terminology hereditary bunched cycle and discuss the apparently difficult problem of determining which hereditary bunched cycles actually present spacing shifts.
Citation: John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743
References:
[1]

D. Ahmadi and M. Dabbaghian, Characterization of spacing shifts with positive topological entropy,, Acta Math. Univ. Comenian. (N.S.), 81 (2012), 221.   Google Scholar

[2]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances,, North-Holland Mathematical Library, (1994).   Google Scholar

[3]

J. Banks, Regular Periodic Decompositions for Topologically Transitive maps,, Ergodic Theory Dynam. Systems 17 (1997), 17 (1997), 505.  doi: 10.1017/S0143385797069885.  Google Scholar

[4]

J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley and B. Trotta, Dynamics of spacing shifts,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 4207.  doi: 10.3934/dcds.2013.33.4207.  Google Scholar

[5]

D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition,, John Wiley & Sons, (2004).   Google Scholar

[6]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[7]

S. Ginsburg, Algebraic and automata-theoretic properties of formal languages,, North-Holland/American Elsevier, (1975).   Google Scholar

[8]

M. Harrison, Introduction to Formal Language Theory,, Addison-Wesley, (1978).   Google Scholar

[9]

D. Kwietniak, Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts,, Discrete Contin. Dyn. Syst, 33 (2013), 2451.  doi: 10.3934/dcds.2013.33.2451.  Google Scholar

[10]

K. Lau and A. Zame, On weak mixing of cascades,, Math. Systems Theory, 6 (1973), 307.  doi: 10.1007/BF01740722.  Google Scholar

[11]

D. Lind and B. Marcus, Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[12]

M. Lothaire, Algebraic Combinatorics on Words,, Cambridge University Press, (1997).  doi: 10.1017/CBO9780511566097.  Google Scholar

show all references

References:
[1]

D. Ahmadi and M. Dabbaghian, Characterization of spacing shifts with positive topological entropy,, Acta Math. Univ. Comenian. (N.S.), 81 (2012), 221.   Google Scholar

[2]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances,, North-Holland Mathematical Library, (1994).   Google Scholar

[3]

J. Banks, Regular Periodic Decompositions for Topologically Transitive maps,, Ergodic Theory Dynam. Systems 17 (1997), 17 (1997), 505.  doi: 10.1017/S0143385797069885.  Google Scholar

[4]

J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley and B. Trotta, Dynamics of spacing shifts,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 4207.  doi: 10.3934/dcds.2013.33.4207.  Google Scholar

[5]

D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition,, John Wiley & Sons, (2004).   Google Scholar

[6]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[7]

S. Ginsburg, Algebraic and automata-theoretic properties of formal languages,, North-Holland/American Elsevier, (1975).   Google Scholar

[8]

M. Harrison, Introduction to Formal Language Theory,, Addison-Wesley, (1978).   Google Scholar

[9]

D. Kwietniak, Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts,, Discrete Contin. Dyn. Syst, 33 (2013), 2451.  doi: 10.3934/dcds.2013.33.2451.  Google Scholar

[10]

K. Lau and A. Zame, On weak mixing of cascades,, Math. Systems Theory, 6 (1973), 307.  doi: 10.1007/BF01740722.  Google Scholar

[11]

D. Lind and B. Marcus, Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[12]

M. Lothaire, Algebraic Combinatorics on Words,, Cambridge University Press, (1997).  doi: 10.1017/CBO9780511566097.  Google Scholar

[1]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[2]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[3]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[4]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[5]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[6]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[7]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[8]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[9]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[10]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]