-
Previous Article
Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains
- DCDS Home
- This Issue
-
Next Article
Transitive sofic spacing shifts
Rigorous numerics for nonlinear operators with tridiagonal dominant linear part
1. | CMLA, ENS Cachan & CNRS, 61 avenue du Président Wilson, 94230 Cachan, France, France |
2. | Département de Mathématiques et de Statistique, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V0A6, Canada |
References:
[1] |
A. W. Baker, M. Dellnitz and O. Junge, A topological method for rigorously computing periodic orbits using Fourier modes,, Discrete Contin. Dyn. Syst., 13 (2005), 901.
doi: 10.3934/dcds.2005.13.901. |
[2] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition, (2001).
|
[3] |
M. Breden, J.-P. Lessard and M. Vanicat, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: A 3-component reaction-diffusion system,, Acta Appl. Math., 128 (2013), 113.
doi: 10.1007/s10440-013-9823-6. |
[4] |
M. Breden, L. Desvillettes and J.-P. Lessard, MATLAB codes to perform the proofs,, , (). Google Scholar |
[5] |
R. Castelli and J.-P. Lessard, Rigorous numerics in Floquet theory: Computing stable and unstable bundles of periodic orbits,, SIAM J. Appl. Dyn. Syst., 12 (2013), 204.
doi: 10.1137/120873960. |
[6] |
P. G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation,, With the assistance of Bernadette Miara and Jean-Marie Thomas, (1989).
|
[7] |
S. Day, O. Junge and K. Mischaikow, A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems,, SIAM J. Appl. Dyn. Syst., 3 (2004), 117.
doi: 10.1137/030600210. |
[8] |
M. Gameiro and J.-P. Lessard, Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs,, J. Differential Equations, 249 (2010), 2237.
doi: 10.1016/j.jde.2010.07.002. |
[9] |
M. Gameiro and J.-P. Lessard, Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates,, SIAM J. Numer. Anal., 51 (2013), 2063.
doi: 10.1137/110836651. |
[10] |
Y. Hiraoka and T. Ogawa, Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation,, Japan J. Indust. Appl. Math., 22 (2005), 57.
doi: 10.1007/BF03167476. |
[11] |
A. Hungria, J.-P. Lessard and J. D. Mireles-James, Radii polynomial approach for analytic solutions of differential equations: Theory, examples, and comparisons,, To appear in Math. Comp., (2015). Google Scholar |
[12] |
G. Kiss and J.-P. Lessard, Computational fixed-point theory for differential delay equations with multiple time lags,, J. Differential Equations, 252 (2012), 3093.
doi: 10.1016/j.jde.2011.11.020. |
[13] |
D. E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical Algorithms,, Second edition, (1981).
|
[14] |
V. R. Korostyshevskiy and T. Wanner, A Hermite spectral method for the computation of homoclinic orbits and associated functionals,, J. Comput. Appl. Math., 206 (2007), 986.
doi: 10.1016/j.cam.2006.09.016. |
[15] |
V. R. Korostyshevskiy, A Hermite Spectral Approach to Homoclinic Solutions of Ordinary Differential Equations,, ProQuest LLC, (2005).
|
[16] |
J.-P. Lessard, J. D. Mireles James and J. Ransford, Automatic differentiation for Fourier series and the radii polynomial approach,, in preparation., (). Google Scholar |
[17] |
S. M. Rump, INTLAB - INTerval LABoratory,, in Developments in Reliable Computing (ed. Tibor Csendes), (1999), 77.
doi: 10.1007/978-94-017-1247-7_7. |
[18] |
P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation,, Found. Comput. Math., 1 (2001), 255.
doi: 10.1007/s002080010010. |
show all references
References:
[1] |
A. W. Baker, M. Dellnitz and O. Junge, A topological method for rigorously computing periodic orbits using Fourier modes,, Discrete Contin. Dyn. Syst., 13 (2005), 901.
doi: 10.3934/dcds.2005.13.901. |
[2] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition, (2001).
|
[3] |
M. Breden, J.-P. Lessard and M. Vanicat, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: A 3-component reaction-diffusion system,, Acta Appl. Math., 128 (2013), 113.
doi: 10.1007/s10440-013-9823-6. |
[4] |
M. Breden, L. Desvillettes and J.-P. Lessard, MATLAB codes to perform the proofs,, , (). Google Scholar |
[5] |
R. Castelli and J.-P. Lessard, Rigorous numerics in Floquet theory: Computing stable and unstable bundles of periodic orbits,, SIAM J. Appl. Dyn. Syst., 12 (2013), 204.
doi: 10.1137/120873960. |
[6] |
P. G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation,, With the assistance of Bernadette Miara and Jean-Marie Thomas, (1989).
|
[7] |
S. Day, O. Junge and K. Mischaikow, A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems,, SIAM J. Appl. Dyn. Syst., 3 (2004), 117.
doi: 10.1137/030600210. |
[8] |
M. Gameiro and J.-P. Lessard, Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs,, J. Differential Equations, 249 (2010), 2237.
doi: 10.1016/j.jde.2010.07.002. |
[9] |
M. Gameiro and J.-P. Lessard, Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates,, SIAM J. Numer. Anal., 51 (2013), 2063.
doi: 10.1137/110836651. |
[10] |
Y. Hiraoka and T. Ogawa, Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation,, Japan J. Indust. Appl. Math., 22 (2005), 57.
doi: 10.1007/BF03167476. |
[11] |
A. Hungria, J.-P. Lessard and J. D. Mireles-James, Radii polynomial approach for analytic solutions of differential equations: Theory, examples, and comparisons,, To appear in Math. Comp., (2015). Google Scholar |
[12] |
G. Kiss and J.-P. Lessard, Computational fixed-point theory for differential delay equations with multiple time lags,, J. Differential Equations, 252 (2012), 3093.
doi: 10.1016/j.jde.2011.11.020. |
[13] |
D. E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical Algorithms,, Second edition, (1981).
|
[14] |
V. R. Korostyshevskiy and T. Wanner, A Hermite spectral method for the computation of homoclinic orbits and associated functionals,, J. Comput. Appl. Math., 206 (2007), 986.
doi: 10.1016/j.cam.2006.09.016. |
[15] |
V. R. Korostyshevskiy, A Hermite Spectral Approach to Homoclinic Solutions of Ordinary Differential Equations,, ProQuest LLC, (2005).
|
[16] |
J.-P. Lessard, J. D. Mireles James and J. Ransford, Automatic differentiation for Fourier series and the radii polynomial approach,, in preparation., (). Google Scholar |
[17] |
S. M. Rump, INTLAB - INTerval LABoratory,, in Developments in Reliable Computing (ed. Tibor Csendes), (1999), 77.
doi: 10.1007/978-94-017-1247-7_7. |
[18] |
P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation,, Found. Comput. Math., 1 (2001), 255.
doi: 10.1007/s002080010010. |
[1] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[2] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[3] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[4] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[5] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]