2015, 35(10): 4805-4821. doi: 10.3934/dcds.2015.35.4805

Schrödinger equations with rough Hamiltonians

1. 

Department of Mathematics, University of Torino, via Carlo Alberto 10, 10123 Torino

2. 

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino

Received  July 2014 Revised  January 2015 Published  April 2015

We consider a class of linear Schrödinger equations in $\mathbb{R}^d$ with rough Hamiltonian, namely with certain derivatives in the Sjöostrand class $M^{\infty,1}$. We prove that the corresponding propagator is bounded on modulation spaces. The present results improve several contributions recently appeared in the literature and can be regarded as the evolution counterpart of the fundamental result of Sjöstrand about the boundedness of pseudodifferential operators with symbols in that class.
    Finally we consider nonlinear perturbations of real-analytic type and we prove local wellposedness of the corresponding initial value problem in certain modulation spaces.
Citation: Elena Cordero, Fabio Nicola, Luigi Rodino. Schrödinger equations with rough Hamiltonians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4805-4821. doi: 10.3934/dcds.2015.35.4805
References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces,, J. Funct. Anal., 246 (2007), 366. doi: 10.1016/j.jfa.2006.12.019.

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces,, Bull. Lond. Math. Soc., 41 (2009), 549. doi: 10.1112/blms/bdp027.

[3]

A. Boulkhemair, Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators,, Math. Res. Lett., 4 (1997), 53. doi: 10.4310/MRL.1997.v4.n1.a6.

[4]

A. Boulkhemair, Estimations $L^2$ precisées pour des integrales oscillantes., Comm. Partial Differential Equations, 22 (1997), 165. doi: 10.1080/03605309708821259.

[5]

F. Concetti, G. Garello and J. Toft, Trace ideals for Fourier integral operators with non-smooth symbols II,, Osaka J. Math., 47 (2010), 739.

[6]

E. Cordero, K. Gröchenig and F. Nicola, Approximation of Fourier integral operators by Gabor multipliers,, J. Fourier Anal. Appl., 18 (2012), 661. doi: 10.1007/s00041-011-9214-1.

[7]

E. Cordero, K. Gröchenig, F. Nicola and L. Rodino, Wiener algebras of Fourier integral operators,, J. Math. Pures Appl., 99 (2013), 219. doi: 10.1016/j.matpur.2012.06.012.

[8]

E. Cordero, K. Gröchenig, F. Nicola and L. Rodino, Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class,, J. Math. Phys., 55 (2014).

[9]

E. Cordero and F. Nicola, Remarks on Fourier multipliers and applications to the wave equation,, J. Math. Anal. Appl., 353 (2009), 583. doi: 10.1016/j.jmaa.2008.12.027.

[10]

E. Cordero and F. Nicola, Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation,, J. Funct. Anal., 254 (2008), 506. doi: 10.1016/j.jfa.2007.09.015.

[11]

E. Cordero and F. Nicola, Boundedness of Schrödinger type propagators on modulation spaces,, J. Fourier Anal. Appl., 16 (2010), 311. doi: 10.1007/s00041-009-9111-z.

[12]

E. Cordero, F. Nicola and L. Rodino, Time-frequency analysis of Fourier integral operators,, Commun. Pure Appl. Anal., 9 (2010), 1. doi: 10.3934/cpaa.2010.9.1.

[13]

E. Cordero, F. Nicola and L. Rodino, Gabor representations of evolution operators,, Trans. Amer. Math. Soc., 361 (2009), 6049. doi: 10.1090/S0002-9947-09-04848-X.

[14]

E. Cordero, F. Nicola and L. Rodino, Propagation of the Gabor wave front set for Schrödinger equations with non-smooth potential,, Rev. Math. Phys., 27 (2015). doi: 10.1142/S0129055X15500014.

[15]

P. D'Ancona, V. Pierfelice and N. Visciglia, Some remarks on the Schroedinger equation with a potential in $L^r_t L^s_x$,, Math. Ann., 333 (2005), 271. doi: 10.1007/s00208-005-0672-0.

[16]

I. Daubechies, Time-frequency localization operators: A geometric phase space approach,, IEEE Trans. Inf. Theory, 34 (1988), 605. doi: 10.1109/18.9761.

[17]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups,, in Wavelets and their Applications (eds. M. Krishna, (2003), 99.

[18]

K. Gröchenig, Foundations of Time-Frequency Analysis,, Applied and Numerical Harmonic Analysis, (2001). doi: 10.1007/978-1-4612-0003-1.

[19]

K. Gröchenig, Time-frequency analysis of Sjöstrand's class,, Rev. Mat. Iberoam., 22 (2006), 703. doi: 10.4171/RMI/471.

[20]

K. Gröchenig and Z. Rzeszotnik, Banach algebras of pseudodifferential operators and their almost diagonalization,, Ann. Inst. Fourier, 58 (2008), 2279.

[21]

F. Herau, Melin-Hörmander inequality in a Wiener type pseudo-differential algebra,, Ark. för Mat., 39 (2001), 311. doi: 10.1007/BF02384559.

[22]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III,, Springer-Verlag, (1985).

[23]

K. Kato, M. Kobayashi and S. Ito, Representation of Schrödinger operator of a free particle via short time Fourier transform and its applications,, Tohoku Math. J., 64 (2012), 223. doi: 10.2748/tmj/1341249372.

[24]

K. Kato, M. Kobayashi and S. Ito, Remark on wave front sets of solutions to Schrödinger equation of a free particle and a harmonic oscillator,, SUT J. Math., 47 (2011), 175.

[25]

K. Kato, M. Kobayashi and S. Ito, Remarks on Wiener Amalgam space type estimates for Schrödinger equation,, RIMS Kôkyûroku Bessatsu, (2012), 41.

[26]

K. Kato, M. Kobayashi and S. Ito, Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials,, J. Funct. Anal., 266 (2014), 733. doi: 10.1016/j.jfa.2013.08.017.

[27]

H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators,, Comm. Pure Appl. Math., 58 (2005), 217. doi: 10.1002/cpa.20067.

[28]

N. Lerner, Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators,, Pseudo-Differential Operators. Theory and Applications, (2010). doi: 10.1007/978-3-7643-8510-1.

[29]

N. Lerner and Y. Morimoto, On the Fefferman-Phong inequality and a Wiener-type algebra of pseudodifferential operators,, Publications of the Research Institute for Mathematical Sciences (Kyoto University), 43 (2007), 329.

[30]

A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces,, Proc. Amer. Math. Soc., 137 (2009), 3869. doi: 10.1090/S0002-9939-09-09968-7.

[31]

F. Nicola, Phase space analysis of semilinear parabolic equations,, J. Funct. Anal., 267 (2014), 727. doi: 10.1016/j.jfa.2014.05.007.

[32]

R. Rochberg and K. Tachizawa, Pseudodifferential operators, Gabor frames, and local trigonometric bases,, in Gabor Analysis and Algorithms, (1998), 171.

[33]

M. Ruzhansky, M. Sugimoto and B. Wang, Modulation spaces and nonlinear evolution equations,, in Evolution Equations of Hyperbolic and Schrödinger Type, (2012), 267. doi: 10.1007/978-3-0348-0454-7_14.

[34]

H. F. Smith, A parametrix construction for wave equations with $C^{1,1}$ coefficients,, Ann. Inst. Fourier (Grenoble), 48 (1998), 797.

[35]

G. Staffilani and D. Tataru, Strichartz estimates for the Schrödinger operator with nonsmooth coefficients,, Comm. Partial Differential Equations, 27 (2002), 1337. doi: 10.1081/PDE-120005841.

[36]

J. Sjöstrand, An algebra of pseudodifferential operators,, Math. Res. Lett., 1 (1994), 185. doi: 10.4310/MRL.1994.v1.n2.a6.

[37]

J. Sjöstrand, Wiener type algebras of pseudodifferential operators,, in Séminaire sur les Équations aux Dérivées Partielles, (1995), 1994.

[38]

D. Tataru, Phase space transforms and microlocal analysis,, in Phase Space Analysis of Partial Differential Equations, (2004), 505.

[39]

D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III,, J. Amer. Math. Soc., 15 (2002), 419. doi: 10.1090/S0894-0347-01-00375-7.

[40]

B. Wang, Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data,, J. Funct. Anal., 265 (2013), 3009. doi: 10.1016/j.jfa.2013.08.009.

[41]

B. Wang and C. Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations,, J. Differential Equations, 239 (2007), 213. doi: 10.1016/j.jde.2007.04.009.

[42]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data,, J. Differential Equations, 232 (2007), 36. doi: 10.1016/j.jde.2006.09.004.

[43]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I,, World Scientific Publishing Co. Pte. Ltd., (2011). doi: 10.1142/9789814360746.

[44]

B. Wang, Z. Lifeng and G. Boling, Isometric decomposition operators, function spaces $E^\lambda_p,q$ and applications to nonlinear evolution equations,, J. Funct. Anal., 233 (2006), 1. doi: 10.1016/j.jfa.2005.06.018.

show all references

References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces,, J. Funct. Anal., 246 (2007), 366. doi: 10.1016/j.jfa.2006.12.019.

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces,, Bull. Lond. Math. Soc., 41 (2009), 549. doi: 10.1112/blms/bdp027.

[3]

A. Boulkhemair, Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators,, Math. Res. Lett., 4 (1997), 53. doi: 10.4310/MRL.1997.v4.n1.a6.

[4]

A. Boulkhemair, Estimations $L^2$ precisées pour des integrales oscillantes., Comm. Partial Differential Equations, 22 (1997), 165. doi: 10.1080/03605309708821259.

[5]

F. Concetti, G. Garello and J. Toft, Trace ideals for Fourier integral operators with non-smooth symbols II,, Osaka J. Math., 47 (2010), 739.

[6]

E. Cordero, K. Gröchenig and F. Nicola, Approximation of Fourier integral operators by Gabor multipliers,, J. Fourier Anal. Appl., 18 (2012), 661. doi: 10.1007/s00041-011-9214-1.

[7]

E. Cordero, K. Gröchenig, F. Nicola and L. Rodino, Wiener algebras of Fourier integral operators,, J. Math. Pures Appl., 99 (2013), 219. doi: 10.1016/j.matpur.2012.06.012.

[8]

E. Cordero, K. Gröchenig, F. Nicola and L. Rodino, Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class,, J. Math. Phys., 55 (2014).

[9]

E. Cordero and F. Nicola, Remarks on Fourier multipliers and applications to the wave equation,, J. Math. Anal. Appl., 353 (2009), 583. doi: 10.1016/j.jmaa.2008.12.027.

[10]

E. Cordero and F. Nicola, Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation,, J. Funct. Anal., 254 (2008), 506. doi: 10.1016/j.jfa.2007.09.015.

[11]

E. Cordero and F. Nicola, Boundedness of Schrödinger type propagators on modulation spaces,, J. Fourier Anal. Appl., 16 (2010), 311. doi: 10.1007/s00041-009-9111-z.

[12]

E. Cordero, F. Nicola and L. Rodino, Time-frequency analysis of Fourier integral operators,, Commun. Pure Appl. Anal., 9 (2010), 1. doi: 10.3934/cpaa.2010.9.1.

[13]

E. Cordero, F. Nicola and L. Rodino, Gabor representations of evolution operators,, Trans. Amer. Math. Soc., 361 (2009), 6049. doi: 10.1090/S0002-9947-09-04848-X.

[14]

E. Cordero, F. Nicola and L. Rodino, Propagation of the Gabor wave front set for Schrödinger equations with non-smooth potential,, Rev. Math. Phys., 27 (2015). doi: 10.1142/S0129055X15500014.

[15]

P. D'Ancona, V. Pierfelice and N. Visciglia, Some remarks on the Schroedinger equation with a potential in $L^r_t L^s_x$,, Math. Ann., 333 (2005), 271. doi: 10.1007/s00208-005-0672-0.

[16]

I. Daubechies, Time-frequency localization operators: A geometric phase space approach,, IEEE Trans. Inf. Theory, 34 (1988), 605. doi: 10.1109/18.9761.

[17]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups,, in Wavelets and their Applications (eds. M. Krishna, (2003), 99.

[18]

K. Gröchenig, Foundations of Time-Frequency Analysis,, Applied and Numerical Harmonic Analysis, (2001). doi: 10.1007/978-1-4612-0003-1.

[19]

K. Gröchenig, Time-frequency analysis of Sjöstrand's class,, Rev. Mat. Iberoam., 22 (2006), 703. doi: 10.4171/RMI/471.

[20]

K. Gröchenig and Z. Rzeszotnik, Banach algebras of pseudodifferential operators and their almost diagonalization,, Ann. Inst. Fourier, 58 (2008), 2279.

[21]

F. Herau, Melin-Hörmander inequality in a Wiener type pseudo-differential algebra,, Ark. för Mat., 39 (2001), 311. doi: 10.1007/BF02384559.

[22]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III,, Springer-Verlag, (1985).

[23]

K. Kato, M. Kobayashi and S. Ito, Representation of Schrödinger operator of a free particle via short time Fourier transform and its applications,, Tohoku Math. J., 64 (2012), 223. doi: 10.2748/tmj/1341249372.

[24]

K. Kato, M. Kobayashi and S. Ito, Remark on wave front sets of solutions to Schrödinger equation of a free particle and a harmonic oscillator,, SUT J. Math., 47 (2011), 175.

[25]

K. Kato, M. Kobayashi and S. Ito, Remarks on Wiener Amalgam space type estimates for Schrödinger equation,, RIMS Kôkyûroku Bessatsu, (2012), 41.

[26]

K. Kato, M. Kobayashi and S. Ito, Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials,, J. Funct. Anal., 266 (2014), 733. doi: 10.1016/j.jfa.2013.08.017.

[27]

H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators,, Comm. Pure Appl. Math., 58 (2005), 217. doi: 10.1002/cpa.20067.

[28]

N. Lerner, Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators,, Pseudo-Differential Operators. Theory and Applications, (2010). doi: 10.1007/978-3-7643-8510-1.

[29]

N. Lerner and Y. Morimoto, On the Fefferman-Phong inequality and a Wiener-type algebra of pseudodifferential operators,, Publications of the Research Institute for Mathematical Sciences (Kyoto University), 43 (2007), 329.

[30]

A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces,, Proc. Amer. Math. Soc., 137 (2009), 3869. doi: 10.1090/S0002-9939-09-09968-7.

[31]

F. Nicola, Phase space analysis of semilinear parabolic equations,, J. Funct. Anal., 267 (2014), 727. doi: 10.1016/j.jfa.2014.05.007.

[32]

R. Rochberg and K. Tachizawa, Pseudodifferential operators, Gabor frames, and local trigonometric bases,, in Gabor Analysis and Algorithms, (1998), 171.

[33]

M. Ruzhansky, M. Sugimoto and B. Wang, Modulation spaces and nonlinear evolution equations,, in Evolution Equations of Hyperbolic and Schrödinger Type, (2012), 267. doi: 10.1007/978-3-0348-0454-7_14.

[34]

H. F. Smith, A parametrix construction for wave equations with $C^{1,1}$ coefficients,, Ann. Inst. Fourier (Grenoble), 48 (1998), 797.

[35]

G. Staffilani and D. Tataru, Strichartz estimates for the Schrödinger operator with nonsmooth coefficients,, Comm. Partial Differential Equations, 27 (2002), 1337. doi: 10.1081/PDE-120005841.

[36]

J. Sjöstrand, An algebra of pseudodifferential operators,, Math. Res. Lett., 1 (1994), 185. doi: 10.4310/MRL.1994.v1.n2.a6.

[37]

J. Sjöstrand, Wiener type algebras of pseudodifferential operators,, in Séminaire sur les Équations aux Dérivées Partielles, (1995), 1994.

[38]

D. Tataru, Phase space transforms and microlocal analysis,, in Phase Space Analysis of Partial Differential Equations, (2004), 505.

[39]

D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III,, J. Amer. Math. Soc., 15 (2002), 419. doi: 10.1090/S0894-0347-01-00375-7.

[40]

B. Wang, Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data,, J. Funct. Anal., 265 (2013), 3009. doi: 10.1016/j.jfa.2013.08.009.

[41]

B. Wang and C. Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations,, J. Differential Equations, 239 (2007), 213. doi: 10.1016/j.jde.2007.04.009.

[42]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data,, J. Differential Equations, 232 (2007), 36. doi: 10.1016/j.jde.2006.09.004.

[43]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I,, World Scientific Publishing Co. Pte. Ltd., (2011). doi: 10.1142/9789814360746.

[44]

B. Wang, Z. Lifeng and G. Boling, Isometric decomposition operators, function spaces $E^\lambda_p,q$ and applications to nonlinear evolution equations,, J. Funct. Anal., 233 (2006), 1. doi: 10.1016/j.jfa.2005.06.018.

[1]

W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708

[2]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[3]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[4]

Yaotian Shen, Youjun Wang. A class of generalized quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2016, 15 (3) : 853-870. doi: 10.3934/cpaa.2016.15.853

[5]

Dachun Yang, Dongyong Yang, Yuan Zhou. Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators. Communications on Pure & Applied Analysis, 2010, 9 (3) : 779-812. doi: 10.3934/cpaa.2010.9.779

[6]

Bernd Ammann, Robert Lauter and Victor Nistor. Algebras of pseudodifferential operators on complete manifolds. Electronic Research Announcements, 2003, 9: 80-87.

[7]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[8]

Jun Cao, Der-Chen Chang, Dachun Yang, Sibei Yang. Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1435-1463. doi: 10.3934/cpaa.2014.13.1435

[9]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[10]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[11]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[12]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[13]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[14]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[15]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 75-88. doi: 10.3934/dcds.2004.10.75

[16]

Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407

[17]

Akihiro Shimomura. Modified wave operators for the coupled wave-Schrödinger equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1571-1586. doi: 10.3934/dcds.2003.9.1571

[18]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[19]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[20]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]